Dekode commited on
Commit
3d39149
·
verified ·
1 Parent(s): 9635e2c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -24
app.py CHANGED
@@ -8,52 +8,43 @@ from langchain_community.llms import HuggingFaceHub
8
  from langchain.memory import ConversationBufferMemory
9
 
10
  def make_vectorstore(embeddings):
11
- # use glob to find all the pdf files in the data folder in the base directory
12
  loader = PyPDFDirectoryLoader("data")
13
-
14
- # load the documents
15
  documents = loader.load()
16
-
17
- # split the documents into chunks of 1400 characters with 0 overlap
18
  text_splitter = CharacterTextSplitter(chunk_size=1400, chunk_overlap=0)
19
-
20
- # split the documents into chunks of 1400 characters with 0 overlap
21
  texts = text_splitter.split_documents(documents)
22
-
23
- # create a vector store from the documents
24
  docsearch = FAISS.from_documents(texts, embeddings)
25
 
26
  return docsearch
27
 
28
- def get_conversation(vectorstore):
29
 
30
- # create a memory object to store the conversation history
31
- memory = ConversationBufferMemory(memory_key="chat_history",return_messages=True,)
32
-
33
- conversation_chain = ConversationalRetrievalChain.from_chain_type(
34
- llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}, huggingfacehub_api_token = st.secrets["hf_token"]),
35
  chain_type="stuff",
36
- retriever=vectorstore.as_retriever(),
37
- memory=memory)
38
 
39
- return conversation_chain
40
 
41
- def get_response(conversation_chain, query):
42
- # get the response
43
- response = conversation_chain.run(query)
 
44
  return response
45
 
46
  def main():
 
47
  st.title("BetterZila RAG Enabled LLM")
 
48
  embeddings = HuggingFaceInstructEmbeddings(model_name="google/t5-v1_1-xl", model_kwargs = {'device': 'cpu'})
49
  vectorstore = make_vectorstore(embeddings)
50
- conversation_chain = get_conversation(vectorstore)
51
  queries = ["Can you give me an example from history where the enemy was crushed totally from the book?", "What's the point of making myself less accessible?", "Can you tell me the story of Queen Elizabeth I from this 48 laws of power book?"]
52
  for query in queries:
53
  st.subheader(f"Query: {query}")
54
- response = get_response(conversation_chain, query)
55
  st.write(query)
56
- st.write(response["llm_response"])
57
  st.success("Responses generated!")
58
 
59
  if __name__ == "__main__":
 
8
  from langchain.memory import ConversationBufferMemory
9
 
10
  def make_vectorstore(embeddings):
11
+
12
  loader = PyPDFDirectoryLoader("data")
 
 
13
  documents = loader.load()
 
 
14
  text_splitter = CharacterTextSplitter(chunk_size=1400, chunk_overlap=0)
 
 
15
  texts = text_splitter.split_documents(documents)
 
 
16
  docsearch = FAISS.from_documents(texts, embeddings)
17
 
18
  return docsearch
19
 
20
+ def get_qa(vectorstore, llmb):
21
 
22
+ qa = RetrievalQA.from_chain_type(
23
+ llm=llmb,
 
 
 
24
  chain_type="stuff",
25
+ retriever=vectorstore.as_retriever())
 
26
 
27
+ return qa
28
 
29
+ def get_response(qa, query):
30
+
31
+ response = qa.run(query)
32
+
33
  return response
34
 
35
  def main():
36
+
37
  st.title("BetterZila RAG Enabled LLM")
38
+ llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}, huggingfacehub_api_token = st.secrets["hf_token"])
39
  embeddings = HuggingFaceInstructEmbeddings(model_name="google/t5-v1_1-xl", model_kwargs = {'device': 'cpu'})
40
  vectorstore = make_vectorstore(embeddings)
41
+ qa = get_qa(vectorstore, llm)
42
  queries = ["Can you give me an example from history where the enemy was crushed totally from the book?", "What's the point of making myself less accessible?", "Can you tell me the story of Queen Elizabeth I from this 48 laws of power book?"]
43
  for query in queries:
44
  st.subheader(f"Query: {query}")
45
+ response = get_response(qa, query)
46
  st.write(query)
47
+ st.write(response)
48
  st.success("Responses generated!")
49
 
50
  if __name__ == "__main__":