Pratik Dwivedi commited on
Commit
5b0f27d
·
1 Parent(s): 543f41b

using lower compute models

Browse files
Files changed (2) hide show
  1. app.py +33 -50
  2. requirements.txt +0 -1
app.py CHANGED
@@ -1,84 +1,67 @@
1
  import streamlit as st
2
  from llmware.prompts import Prompt
3
- from llmware.library import Library
4
- from llmware.retrieval import Query
5
- from llmware.setup import Setup
6
- import requests
7
  import io, os, re
8
  import PyPDF2
9
 
10
- def create_fin_docs_sample_library(library_name):
11
-
12
- print(f"update: creating library - {library_name}")
13
-
14
- library = Library().create_new_library(library_name)
15
- sample_files_path = Setup().load_sample_files(over_write=False)
16
- ingestion_folder_path = os.path.join(sample_files_path, "data")
17
- parsing_output = library.add_files(ingestion_folder_path)
18
- library.install_new_embedding(embedding_model_name="mini-lm-sbert", vector_db="faiss",batch_size=200)
19
- return library
20
-
21
- def basic_semantic_retrieval_example (library):
22
-
23
- q = Query(library)
24
-
25
- # Set the keys that should be returned - optional - full set of keys will be returned by default
26
- q.query_result_return_keys = ["distance","file_source", "page_num", "text"]
27
-
28
- # perform a simple query
29
- my_query = "Elizabeth I"
30
- query_results1 = q.semantic_query(my_query, result_count=20)
31
- # print(query_results1)
32
- # Iterate through query_results, which is a list of result dicts
33
- print(f"\nQuery 1 - {my_query}")
34
- for i, result in enumerate(query_results1):
35
- print("results - ", i, result)
36
-
37
-
38
  def register_gguf_model():
39
 
40
  prompter = Prompt()
41
  your_model_name = "llama"
42
  hf_repo_name = "TheBloke/Llama-2-7B-Chat-GGUF"
43
- model_file = "llama-2-7b-chat.Q5_K_S.gguf"
44
  print("registering models")
45
  prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
46
  your_model_name = "open_gpt4"
47
  hf_repo_name = "TheBloke/Open_Gpt4_8x7B-GGUF"
48
- model_file = "open_gpt4_8x7b.Q4_K_M.gguf"
49
  prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
50
  your_model_name = "phi2"
51
  hf_repo_name = "TheBloke/phi-2-GGUF"
52
- model_file = "phi-2.Q4_K_M.gguf"
53
  prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
54
  your_model_name = "mistral"
55
  hf_repo_name = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF"
56
- model_file = "mistral-7b-instruct-v0.2.Q4_K_M.gguf"
57
  prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
58
  return prompter
59
 
60
  def main():
61
  st.title("BetterZila RAG Enabled LLM")
62
- # with st.spinner("Registering Models for use..."):
63
- # prompter = register_gguf_model()
64
 
65
  data_path = "data/"
66
 
67
- # keep the select box to llama as default but give a button right below it that says select model after which the model will be loaded
68
- # st.sidebar.subheader("Select Model")
69
- # model_name = st.sidebar.selectbox("Select Model", ["llama", "open_gpt4", "phi2", "mistral"])
70
- # with st.spinner("Loading Model..."):
71
- # prompter.load_model(model_name)
72
- # st.success("Model Loaded!")
73
 
74
  queries = ['Can you give me an example from history where the enemy was crushed totally from the book?', "What's the point of making myself less accessible?", "Can you tell me the story of Queen Elizabeth I from this 48 laws of power book?"]
75
 
76
- lib = create_fin_docs_sample_library("48laws")
77
- res_dict=basic_semantic_retrieval_example(lib)
78
- for i, result in enumerate(res_dict):
79
- st.write(i, result)
80
- # st.subheader("Query")
81
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
  # for query in queries:
83
  # st.subheader(f"Query: {query}")
84
  # with st.spinner("Generating response..."):
 
1
  import streamlit as st
2
  from llmware.prompts import Prompt
 
 
 
 
3
  import io, os, re
4
  import PyPDF2
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  def register_gguf_model():
7
 
8
  prompter = Prompt()
9
  your_model_name = "llama"
10
  hf_repo_name = "TheBloke/Llama-2-7B-Chat-GGUF"
11
+ model_file = "llama-2-7b-chat.Q3_K_M.gguf"
12
  print("registering models")
13
  prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
14
  your_model_name = "open_gpt4"
15
  hf_repo_name = "TheBloke/Open_Gpt4_8x7B-GGUF"
16
+ model_file = "open_gpt4_8x7b.Q3_K_M.gguf"
17
  prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
18
  your_model_name = "phi2"
19
  hf_repo_name = "TheBloke/phi-2-GGUF"
20
+ model_file = "phi-2.Q3_K_M.gguf"
21
  prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
22
  your_model_name = "mistral"
23
  hf_repo_name = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF"
24
+ model_file = "mistral-7b-instruct-v0.2.Q3_K_M.gguf"
25
  prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
26
  return prompter
27
 
28
  def main():
29
  st.title("BetterZila RAG Enabled LLM")
30
+ with st.spinner("Registering Models for use..."):
31
+ prompter = register_gguf_model()
32
 
33
  data_path = "data/"
34
 
35
+ st.sidebar.subheader("Select Model")
36
+ model_name = st.sidebar.selectbox("Select Model", ["llama", "open_gpt4", "phi2", "mistral"])
37
+ with st.spinner("Loading Model..."):
38
+ prompter.load_model(model_name)
39
+ st.success("Model Loaded!")
 
40
 
41
  queries = ['Can you give me an example from history where the enemy was crushed totally from the book?', "What's the point of making myself less accessible?", "Can you tell me the story of Queen Elizabeth I from this 48 laws of power book?"]
42
 
43
+ st.subheader("Query")
44
+
45
+ with st.spinner("Loading PDF file..."):
46
+ for file in os.listdir(data_path):
47
+ if file.endswith(".pdf"):
48
+ print("Found PDF file: ", file)
49
+ pdf_file = file
50
+ break
51
+ print("loading Source...")
52
+ source = prompter.add_source_document(data_path, pdf_file, query=None)
53
+
54
+ for query in queries:
55
+ st.subheader(f"Query: {query}")
56
+ with st.spinner("Generating response..."):
57
+ responses = prompter.prompt_with_source(query, prompt_name="just_the_facts", temperature=0.3)
58
+
59
+ for r, response in enumerate(responses):
60
+ st.write(query)
61
+ st.write(re.sub("[\n]", " ", response["llm_response"]).strip())
62
+
63
+ st.success("Responses generated!")
64
+
65
  # for query in queries:
66
  # st.subheader(f"Query: {query}")
67
  # with st.spinner("Generating response..."):
requirements.txt CHANGED
@@ -1,4 +1,3 @@
1
  llmware
2
  streamlit
3
- requests
4
  PyPDF2
 
1
  llmware
2
  streamlit
 
3
  PyPDF2