Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import LLMChain | |
from langchain_community.llms import HuggingFaceHub | |
from langchain.prompts import PromptTemplate | |
from dotenv import load_dotenv | |
import time | |
def get_response(model, query): | |
prompt_template = PromptTemplate( | |
template="I have a question about my health. {user_question}", | |
input_variables=["user_question"] | |
) | |
# get the response | |
memory = ConversationBufferMemory(memory_key="messages", return_messages=True) | |
print(memory) | |
conversation_chain = LLMChain( | |
llm=model, | |
prompt=prompt_template, | |
# retriever=vectorstore.as_retriever(), | |
memory=memory) | |
response = conversation_chain.invoke(query) | |
answer = response["text"] | |
if "\n\n" in answer: | |
answer = answer.split("\n\n", 1)[1] | |
return answer | |
def main(): | |
st.title("Health Chatbot") | |
# load the environment variables | |
load_dotenv() | |
print("Loading LLM from HuggingFace") | |
with st.spinner('Loading LLM from HuggingFace...'): | |
# llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.7, "max_new_tokens":1028, "top_p":0.95}) | |
llm = HuggingFaceHub(repo_id="epfl-llm/meditron-70b", model_kwargs={"temperature":0.7, "max_new_tokens":1028, "top_p":0.95}) | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if st.button("Clear Chat"): | |
st.session_state.messages = [] | |
for message in st.session_state.messages: | |
if message["role"] == "user": | |
st.chat_message("user").markdown(message["content"]) | |
else: | |
st.chat_message("bot").markdown(message["content"]) | |
user_prompt = st.chat_input("ask a question", key="user") | |
if user_prompt: | |
st.chat_message("user").markdown(user_prompt) | |
st.session_state.messages.append({"role": "user", "content": user_prompt}) | |
with st.spinner('Thinking...'): | |
start_time = time.time() | |
response = get_response(llm, user_prompt) | |
st.write("Response Time: ", time.time() - start_time) | |
st.chat_message("bot").markdown(response) | |
st.session_state.messages.append({"role": "bot", "content": response}) | |
if __name__ == "__main__": | |
main() |