File size: 7,893 Bytes
f1ea451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import math
import torch
from torch.nn import functional as F
from torch import nn


def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
    return F.leaky_relu(input + bias, negative_slope) * scale


class FusedLeakyReLU(nn.Module):
    def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
        super().__init__()
        self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
        self.negative_slope = negative_slope
        self.scale = scale

    def forward(self, input):
        # print("FusedLeakyReLU: ", input.abs().mean())
        out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
        # print("FusedLeakyReLU: ", out.abs().mean())
        return out


def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
    _, minor, in_h, in_w = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, minor, in_h, 1, in_w, 1)
    out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
    out = out.view(-1, minor, in_h * up_y, in_w * up_x)

    out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ]

    # out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
                      in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )
    # out = out.permute(0, 2, 3, 1)

    return out[:, :, ::down_y, ::down_x]


def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
    return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])


def make_kernel(k):
    k = torch.tensor(k, dtype=torch.float32)

    if k.ndim == 1:
        k = k[None, :] * k[:, None]

    k /= k.sum()

    return k


class Blur(nn.Module):
    def __init__(self, kernel, pad, upsample_factor=1):
        super().__init__()

        kernel = make_kernel(kernel)

        if upsample_factor > 1:
            kernel = kernel * (upsample_factor ** 2)

        self.register_buffer('kernel', kernel)

        self.pad = pad

    def forward(self, input):
        return upfirdn2d(input, self.kernel, pad=self.pad)


class ScaledLeakyReLU(nn.Module):
    def __init__(self, negative_slope=0.2):
        super().__init__()

        self.negative_slope = negative_slope

    def forward(self, input):
        return F.leaky_relu(input, negative_slope=self.negative_slope)


class EqualConv2d(nn.Module):
    def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
        super().__init__()

        self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
        self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)

        self.stride = stride
        self.padding = padding

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_channel))
        else:
            self.bias = None

    def forward(self, input):

        return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride,
                        padding=self.padding, )

    def __repr__(self):
        return (
            f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
            f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
        )


class EqualLinear(nn.Module):
    def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None):
        super().__init__()

        self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
        else:
            self.bias = None

        self.activation = activation

        self.scale = (1 / math.sqrt(in_dim)) * lr_mul
        self.lr_mul = lr_mul

    def forward(self, input):

        if self.activation:
            out = F.linear(input, self.weight * self.scale)
            out = fused_leaky_relu(out, self.bias * self.lr_mul)
        else:
            out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)

        return out

    def __repr__(self):
        return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})')


class ConvLayer(nn.Sequential):
    def __init__(
            self,
            in_channel,
            out_channel,
            kernel_size,
            downsample=False,
            blur_kernel=[1, 3, 3, 1],
            bias=True,
            activate=True,
    ):
        layers = []

        if downsample:
            factor = 2
            p = (len(blur_kernel) - factor) + (kernel_size - 1)
            pad0 = (p + 1) // 2
            pad1 = p // 2

            layers.append(Blur(blur_kernel, pad=(pad0, pad1)))

            stride = 2
            self.padding = 0

        else:
            stride = 1
            self.padding = kernel_size // 2

        layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride,
                                  bias=bias and not activate))

        if activate:
            if bias:
                layers.append(FusedLeakyReLU(out_channel))
            else:
                layers.append(ScaledLeakyReLU(0.2))

        super().__init__(*layers)


class ResBlock(nn.Module):
    def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
        super().__init__()

        self.conv1 = ConvLayer(in_channel, in_channel, 3)
        self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)

        self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False)

    def forward(self, input):
        out = self.conv1(input)
        out = self.conv2(out)

        skip = self.skip(input)
        out = (out + skip) / math.sqrt(2)

        return out


class Discriminator(nn.Module):
    def __init__(self, size, channel_multiplier=1, blur_kernel=[1, 3, 3, 1]):
        super().__init__()

        self.size = size

        channels = {
            4: 512,
            8: 512,
            16: 512,
            32: 512,
            64: 256 * channel_multiplier,
            128: 128 * channel_multiplier,
            256: 64 * channel_multiplier,
            512: 32 * channel_multiplier,
            1024: 16 * channel_multiplier,
        }

        convs = [ConvLayer(3, channels[size], 1)]
        log_size = int(math.log(size, 2))
        in_channel = channels[size]

        for i in range(log_size, 2, -1):
            out_channel = channels[2 ** (i - 1)]
            convs.append(ResBlock(in_channel, out_channel, blur_kernel))
            in_channel = out_channel

        self.convs = nn.Sequential(*convs)

        self.stddev_group = 4
        self.stddev_feat = 1

        self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
        self.final_linear = nn.Sequential(
            EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
            EqualLinear(channels[4], 1),
        )

    def forward(self, input):
        out = self.convs(input)
        batch, channel, height, width = out.shape

        group = min(batch, self.stddev_group)
        stddev = out.view(group, -1, self.stddev_feat, channel // self.stddev_feat, height, width)
        stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
        stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
        stddev = stddev.repeat(group, 1, height, width)
        out = torch.cat([out, stddev], 1)

        out = self.final_conv(out)

        out = out.view(batch, -1)
        out = self.final_linear(out)

        return out