Anitalker / demo.py
Delik's picture
Upload 32 files
f1ea451 verified
from LIA_Model import LIA_Model
import torch
import numpy as np
import os
from PIL import Image
from tqdm import tqdm
import argparse
import numpy as np
from torchvision import transforms
from templates import *
import argparse
import shutil
from moviepy.editor import *
import librosa
import python_speech_features
import importlib.util
import time
def check_package_installed(package_name):
package_spec = importlib.util.find_spec(package_name)
if package_spec is None:
print(f"{package_name} is not installed.")
return False
else:
print(f"{package_name} is installed.")
return True
def frames_to_video(input_path, audio_path, output_path, fps=25):
image_files = [os.path.join(input_path, img) for img in sorted(os.listdir(input_path))]
clips = [ImageClip(m).set_duration(1/fps) for m in image_files]
video = concatenate_videoclips(clips, method="compose")
audio = AudioFileClip(audio_path)
final_video = video.set_audio(audio)
final_video.write_videofile(output_path, fps=fps, codec='libx264', audio_codec='aac')
def load_image(filename, size):
img = Image.open(filename).convert('RGB')
img = img.resize((size, size))
img = np.asarray(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0
def img_preprocessing(img_path, size):
img = load_image(img_path, size) # [0, 1]
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
return imgs_norm
def saved_image(img_tensor, img_path):
toPIL = transforms.ToPILImage()
img = toPIL(img_tensor.detach().cpu().squeeze(0)) # 使用squeeze(0)来移除批次维度
img.save(img_path)
def main(args):
frames_result_saved_path = os.path.join(args.result_path, 'frames')
os.makedirs(frames_result_saved_path, exist_ok=True)
test_image_name = os.path.splitext(os.path.basename(args.test_image_path))[0]
audio_name = os.path.splitext(os.path.basename(args.test_audio_path))[0]
predicted_video_256_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}.mp4')
predicted_video_512_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}_SR.mp4')
#======Loading Stage 1 model=========
lia = LIA_Model(motion_dim=args.motion_dim, fusion_type='weighted_sum')
lia.load_lightning_model(args.stage1_checkpoint_path)
lia.to(args.device)
#============================
conf = ffhq256_autoenc()
conf.seed = args.seed
conf.decoder_layers = args.decoder_layers
conf.infer_type = args.infer_type
conf.motion_dim = args.motion_dim
if args.infer_type == 'mfcc_full_control':
conf.face_location=True
conf.face_scale=True
conf.mfcc = True
elif args.infer_type == 'mfcc_pose_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = True
elif args.infer_type == 'hubert_pose_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = False
elif args.infer_type == 'hubert_audio_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = False
elif args.infer_type == 'hubert_full_control':
conf.face_location=True
conf.face_scale=True
conf.mfcc = False
else:
print('Type NOT Found!')
exit(0)
if not os.path.exists(args.test_image_path):
print(f'{args.test_image_path} does not exist!')
exit(0)
if not os.path.exists(args.test_audio_path):
print(f'{args.test_audio_path} does not exist!')
exit(0)
img_source = img_preprocessing(args.test_image_path, args.image_size).to(args.device)
one_shot_lia_start, one_shot_lia_direction, feats = lia.get_start_direction_code(img_source, img_source, img_source, img_source)
#======Loading Stage 2 model=========
model = LitModel(conf)
state = torch.load(args.stage2_checkpoint_path, map_location='cpu')
model.load_state_dict(state, strict=True)
model.ema_model.eval()
model.ema_model.to(args.device);
#=================================
#======Audio Input=========
if conf.infer_type.startswith('mfcc'):
# MFCC features
wav, sr = librosa.load(args.test_audio_path, sr=16000)
input_values = python_speech_features.mfcc(signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01)
d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
audio_driven_obj = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2))
frame_start, frame_end = 0, int(audio_driven_obj.shape[0]/4)
audio_start, audio_end = int(frame_start * 4), int(frame_end * 4) # The video frame is fixed to 25 hz and the audio is fixed to 100 hz
audio_driven = torch.Tensor(audio_driven_obj[audio_start:audio_end,:]).unsqueeze(0).float().to(args.device)
elif conf.infer_type.startswith('hubert'):
# Hubert features
if not os.path.exists(args.test_hubert_path):
if not check_package_installed('transformers'):
print('Please install transformers module first.')
exit(0)
hubert_model_path = 'ckpts/chinese-hubert-large'
if not os.path.exists(hubert_model_path):
print('Please download the hubert weight into the ckpts path first.')
exit(0)
print('You did not extract the audio features in advance, extracting online now, which will increase processing delay')
start_time = time.time()
# load hubert model
from transformers import Wav2Vec2FeatureExtractor, HubertModel
audio_model = HubertModel.from_pretrained(hubert_model_path).to(args.device)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_path)
audio_model.feature_extractor._freeze_parameters()
audio_model.eval()
# hubert model forward pass
audio, sr = librosa.load(args.test_audio_path, sr=16000)
input_values = feature_extractor(audio, sampling_rate=16000, padding=True, do_normalize=True, return_tensors="pt").input_values
input_values = input_values.to(args.device)
ws_feats = []
with torch.no_grad():
outputs = audio_model(input_values, output_hidden_states=True)
for i in range(len(outputs.hidden_states)):
ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy())
ws_feat_obj = np.array(ws_feats)
ws_feat_obj = np.squeeze(ws_feat_obj, 1)
ws_feat_obj = np.pad(ws_feat_obj, ((0, 0), (0, 1), (0, 0)), 'edge') # align the audio length with video frame
execution_time = time.time() - start_time
print(f"Extraction Audio Feature: {execution_time:.2f} Seconds")
audio_driven_obj = ws_feat_obj
else:
print(f'Using audio feature from path: {args.test_hubert_path}')
audio_driven_obj = np.load(args.test_hubert_path)
frame_start, frame_end = 0, int(audio_driven_obj.shape[1]/2)
audio_start, audio_end = int(frame_start * 2), int(frame_end * 2) # The video frame is fixed to 25 hz and the audio is fixed to 50 hz
audio_driven = torch.Tensor(audio_driven_obj[:,audio_start:audio_end,:]).unsqueeze(0).float().to(args.device)
#============================
# Diffusion Noise
noisyT = th.randn((1,frame_end, args.motion_dim)).to(args.device)
#======Inputs for Attribute Control=========
if os.path.exists(args.pose_driven_path):
pose_obj = np.load(args.pose_driven_path)
if len(pose_obj.shape) != 2:
print('please check your pose information. The shape must be like (T, 3).')
exit(0)
if pose_obj.shape[1] != 3:
print('please check your pose information. The shape must be like (T, 3).')
exit(0)
if pose_obj.shape[0] >= frame_end:
pose_obj = pose_obj[:frame_end,:]
else:
padding = np.tile(pose_obj[-1, :], (frame_end - pose_obj.shape[0], 1))
pose_obj = np.vstack((pose_obj, padding))
pose_signal = torch.Tensor(pose_obj).unsqueeze(0).to(args.device) / 90 # 90 is for normalization here
else:
yaw_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_yaw
pitch_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_pitch
roll_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_roll
pose_signal = torch.cat((yaw_signal, pitch_signal, roll_signal), dim=-1)
pose_signal = torch.clamp(pose_signal, -1, 1)
face_location_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_location
face_scae_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_scale
#===========================================
start_time = time.time()
#======Diffusion Denosing Process=========
generated_directions = model.render(one_shot_lia_start, one_shot_lia_direction, audio_driven, face_location_signal, face_scae_signal, pose_signal, noisyT, args.step_T, control_flag=args.control_flag)
#=========================================
execution_time = time.time() - start_time
print(f"Motion Diffusion Model: {execution_time:.2f} Seconds")
generated_directions = generated_directions.detach().cpu().numpy()
start_time = time.time()
#======Rendering images frame-by-frame=========
for pred_index in tqdm(range(generated_directions.shape[1])):
ori_img_recon = lia.render(one_shot_lia_start, torch.Tensor(generated_directions[:,pred_index,:]).to(args.device), feats)
ori_img_recon = ori_img_recon.clamp(-1, 1)
wav_pred = (ori_img_recon.detach() + 1) / 2
saved_image(wav_pred, os.path.join(frames_result_saved_path, "%06d.png"%(pred_index)))
#==============================================
execution_time = time.time() - start_time
print(f"Renderer Model: {execution_time:.2f} Seconds")
frames_to_video(frames_result_saved_path, args.test_audio_path, predicted_video_256_path)
shutil.rmtree(frames_result_saved_path)
# Enhancer
# Code is modified from https://github.com/OpenTalker/SadTalker/blob/cd4c0465ae0b54a6f85af57f5c65fec9fe23e7f8/src/utils/face_enhancer.py#L26
if args.face_sr and check_package_installed('gfpgan'):
from face_sr.face_enhancer import enhancer_list
import imageio
# Super-resolution
imageio.mimsave(predicted_video_512_path+'.tmp.mp4', enhancer_list(predicted_video_256_path, method='gfpgan', bg_upsampler=None), fps=float(25))
# Merge audio and video
video_clip = VideoFileClip(predicted_video_512_path+'.tmp.mp4')
audio_clip = AudioFileClip(predicted_video_256_path)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile(predicted_video_512_path, codec='libx264', audio_codec='aac')
os.remove(predicted_video_512_path+'.tmp.mp4')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--infer_type', type=str, default='mfcc_pose_only', help='mfcc_pose_only or mfcc_full_control')
parser.add_argument('--test_image_path', type=str, default='./test_demos/portraits/monalisa.jpg', help='Path to the portrait')
parser.add_argument('--test_audio_path', type=str, default='./test_demos/audios/english_female.wav', help='Path to the driven audio')
parser.add_argument('--test_hubert_path', type=str, default='./test_demos/audios_hubert/english_female.npy', help='Path to the driven audio(hubert type). Not needed for MFCC')
parser.add_argument('--result_path', type=str, default='./results/', help='Type of inference')
parser.add_argument('--stage1_checkpoint_path', type=str, default='./ckpts/stage1.ckpt', help='Path to the checkpoint of Stage1')
parser.add_argument('--stage2_checkpoint_path', type=str, default='./ckpts/pose_only.ckpt', help='Path to the checkpoint of Stage2')
parser.add_argument('--seed', type=int, default=0, help='seed for generations')
parser.add_argument('--control_flag', action='store_true', help='Whether to use control signal or not')
parser.add_argument('--pose_yaw', type=float, default=0.25, help='range from -1 to 1 (-90 ~ 90 angles)')
parser.add_argument('--pose_pitch', type=float, default=0, help='range from -1 to 1 (-90 ~ 90 angles)')
parser.add_argument('--pose_roll', type=float, default=0, help='range from -1 to 1 (-90 ~ 90 angles)')
parser.add_argument('--face_location', type=float, default=0.5, help='range from 0 to 1 (from left to right)')
parser.add_argument('--pose_driven_path', type=str, default='xxx', help='path to pose numpy, shape is (T, 3). You can check the following code https://github.com/liutaocode/talking_face_preprocessing to extract the yaw, pitch and roll.')
parser.add_argument('--face_scale', type=float, default=0.5, help='range from 0 to 1 (from small to large)')
parser.add_argument('--step_T', type=int, default=50, help='Step T for diffusion denoising process')
parser.add_argument('--image_size', type=int, default=256, help='Size of the image. Do not change.')
parser.add_argument('--device', type=str, default='cuda:0', help='Device for computation')
parser.add_argument('--motion_dim', type=int, default=20, help='Dimension of motion. Do not change.')
parser.add_argument('--decoder_layers', type=int, default=2, help='Layer number for the conformer.')
parser.add_argument('--face_sr', action='store_true', help='Face super-resolution (Optional). Please install GFPGAN first')
args = parser.parse_args()
main(args)