Anitalker / model /latentnet.py
Delik's picture
Upload 32 files
f1ea451 verified
raw
history blame
5.84 kB
import math
from dataclasses import dataclass
from enum import Enum
from typing import NamedTuple, Tuple
import torch
from choices import *
from config_base import BaseConfig
from torch import nn
from torch.nn import init
from .blocks import *
from .nn import timestep_embedding
from .unet import *
class LatentNetType(Enum):
none = 'none'
# injecting inputs into the hidden layers
skip = 'skip'
class LatentNetReturn(NamedTuple):
pred: torch.Tensor = None
@dataclass
class MLPSkipNetConfig(BaseConfig):
"""
default MLP for the latent DPM in the paper!
"""
num_channels: int
skip_layers: Tuple[int]
num_hid_channels: int
num_layers: int
num_time_emb_channels: int = 64
activation: Activation = Activation.silu
use_norm: bool = True
condition_bias: float = 1
dropout: float = 0
last_act: Activation = Activation.none
num_time_layers: int = 2
time_last_act: bool = False
def make_model(self):
return MLPSkipNet(self)
class MLPSkipNet(nn.Module):
"""
concat x to hidden layers
default MLP for the latent DPM in the paper!
"""
def __init__(self, conf: MLPSkipNetConfig):
super().__init__()
self.conf = conf
layers = []
for i in range(conf.num_time_layers):
if i == 0:
a = conf.num_time_emb_channels
b = conf.num_channels
else:
a = conf.num_channels
b = conf.num_channels
layers.append(nn.Linear(a, b))
if i < conf.num_time_layers - 1 or conf.time_last_act:
layers.append(conf.activation.get_act())
self.time_embed = nn.Sequential(*layers)
self.layers = nn.ModuleList([])
for i in range(conf.num_layers):
if i == 0:
act = conf.activation
norm = conf.use_norm
cond = True
a, b = conf.num_channels, conf.num_hid_channels
dropout = conf.dropout
elif i == conf.num_layers - 1:
act = Activation.none
norm = False
cond = False
a, b = conf.num_hid_channels, conf.num_channels
dropout = 0
else:
act = conf.activation
norm = conf.use_norm
cond = True
a, b = conf.num_hid_channels, conf.num_hid_channels
dropout = conf.dropout
if i in conf.skip_layers:
a += conf.num_channels
self.layers.append(
MLPLNAct(
a,
b,
norm=norm,
activation=act,
cond_channels=conf.num_channels,
use_cond=cond,
condition_bias=conf.condition_bias,
dropout=dropout,
))
self.last_act = conf.last_act.get_act()
def forward(self, x, t, **kwargs):
t = timestep_embedding(t, self.conf.num_time_emb_channels)
cond = self.time_embed(t)
h = x
for i in range(len(self.layers)):
if i in self.conf.skip_layers:
# injecting input into the hidden layers
h = torch.cat([h, x], dim=1)
h = self.layers[i].forward(x=h, cond=cond)
h = self.last_act(h)
return LatentNetReturn(h)
class MLPLNAct(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
norm: bool,
use_cond: bool,
activation: Activation,
cond_channels: int,
condition_bias: float = 0,
dropout: float = 0,
):
super().__init__()
self.activation = activation
self.condition_bias = condition_bias
self.use_cond = use_cond
self.linear = nn.Linear(in_channels, out_channels)
self.act = activation.get_act()
if self.use_cond:
self.linear_emb = nn.Linear(cond_channels, out_channels)
self.cond_layers = nn.Sequential(self.act, self.linear_emb)
if norm:
self.norm = nn.LayerNorm(out_channels)
else:
self.norm = nn.Identity()
if dropout > 0:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = nn.Identity()
self.init_weights()
def init_weights(self):
for module in self.modules():
if isinstance(module, nn.Linear):
if self.activation == Activation.relu:
init.kaiming_normal_(module.weight,
a=0,
nonlinearity='relu')
elif self.activation == Activation.lrelu:
init.kaiming_normal_(module.weight,
a=0.2,
nonlinearity='leaky_relu')
elif self.activation == Activation.silu:
init.kaiming_normal_(module.weight,
a=0,
nonlinearity='relu')
else:
# leave it as default
pass
def forward(self, x, cond=None):
x = self.linear(x)
if self.use_cond:
# (n, c) or (n, c * 2)
cond = self.cond_layers(cond)
cond = (cond, None)
# scale shift first
x = x * (self.condition_bias + cond[0])
if cond[1] is not None:
x = x + cond[1]
# then norm
x = self.norm(x)
else:
# no condition
x = self.norm(x)
x = self.act(x)
x = self.dropout(x)
return x