Delik commited on
Commit
aad12fa
·
verified ·
1 Parent(s): ff42726

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -1,21 +1,20 @@
1
  import gradio as gr
2
  import os
3
- import torch
4
- import io
5
- import wavio
6
- import numpy as np
7
  from pyannote.audio import Pipeline
8
- from pyannote.audio import Audio
9
- from pyannote.core import Segment
10
 
 
11
  pipeline = Pipeline.from_pretrained(
12
  "pyannote/speaker-diarization-3.1",
13
- use_auth_token=os.environ['api'])
14
 
15
  def process_audio(audio):
 
 
 
 
16
  # Save the uploaded audio file to a temporary location
17
  with open("temp.wav", "wb") as f:
18
- f.write(audio)
19
 
20
  # Use the diarization pipeline to process the audio
21
  diarization = pipeline("temp.wav")
@@ -24,7 +23,7 @@ def process_audio(audio):
24
  os.remove("temp.wav")
25
 
26
  # Return the diarization output
27
- return diarization
28
 
29
  with gr.Blocks() as demo:
30
  audio_input = gr.Audio(type="filepath", label="Upload Audio")
 
1
  import gradio as gr
2
  import os
 
 
 
 
3
  from pyannote.audio import Pipeline
 
 
4
 
5
+ # instantiate the pipeline
6
  pipeline = Pipeline.from_pretrained(
7
  "pyannote/speaker-diarization-3.1",
8
+ use_auth_token="HUGGINGFACE_ACCESS_TOKEN_GOES_HERE")
9
 
10
  def process_audio(audio):
11
+ # Read the uploaded audio file
12
+ with open(audio, "rb") as f:
13
+ audio_data = f.read()
14
+
15
  # Save the uploaded audio file to a temporary location
16
  with open("temp.wav", "wb") as f:
17
+ f.write(audio_data)
18
 
19
  # Use the diarization pipeline to process the audio
20
  diarization = pipeline("temp.wav")
 
23
  os.remove("temp.wav")
24
 
25
  # Return the diarization output
26
+ return str(diarization)
27
 
28
  with gr.Blocks() as demo:
29
  audio_input = gr.Audio(type="filepath", label="Upload Audio")