import gradio as gr import os import torch import io from pyannote.audio import Pipeline from pyannote.audio import Audio from pyannote.audio.pipelines.utils.hook import TimingHook from pyannote.core import Segment pipeline = Pipeline.from_pretrained( "pyannote/speaker-diarization-3.1", use_auth_token=os.environ['api']) #def process_audio(audio): # Your audio processing logic goes here # For demonstration purposes, we'll just return the input audio return audio #with gr.Blocks() as demo: audio_input = gr.Audio(label="Upload Audio", source="upload") process_button = gr.Button("Process") audio_output = gr.Audio(label="Processed Audio") process_button.click(fn=process_audio, inputs=audio_input, outputs=audio_output) demo.launch()