File size: 12,456 Bytes
351ffe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb3e9d8
 
098483c
 
 
6c1c4b0
8583df7
4751ba3
351ffe3
 
 
 
279502f
351ffe3
279502f
351ffe3
be736d4
 
351ffe3
 
 
 
 
 
279502f
 
 
be736d4
098483c
be736d4
 
 
 
 
 
4751ba3
351ffe3
be736d4
50824da
56dd7be
 
 
e4da5b2
098483c
 
be736d4
351ffe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import gradio as gr
from random import randint
from operator import itemgetter
import bisect
from all_models import tags_plus_models,models,models_plus_tags
from datetime import datetime
from externalmod import gr_Interface_load
import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.


now2 = 0
inference_timeout = 300
MAX_SEED = 2**32-1


nb_rep=2
nb_mod_dif=20
nb_models=nb_mod_dif*nb_rep

cache_image={}
cache_image_actu={}


def load_fn(models):
    global models_load
    global num_models
    global default_models
    models_load = {}
    num_models = len(models)
    i=0
    if num_models!=0:
        default_models = models[:num_models]
    else:
        default_models = {}
    for model in models:
        i+=1
        if i%50==0:
            print("\n\n\n-------"+str(i)+'/'+str(len(models))+"-------\n\n\n")
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                m = gr.Interface(lambda txt: None, ['text'], ['image'])
                print(error)
            models_load.update({model: m})


load_fn(models)
    
def test_pass(test):
    if test==os.getenv('p'):
        print("ok")
        return gr.Dropdown(label="Lists Tags", show_label=True, choices=list(models_test) , interactive = True)
    else:
        print("nop")
        return gr.Dropdown(label="Lists Tags", show_label=True, choices=list([]) , interactive = True)

def test_pass_aff(test):
    if test==os.getenv('p'):
        return gr.Accordion( open=True, visible=True) ,gr.Row(visible=False)
    else:
        return gr.Accordion( open=True, visible=False) , gr.Row()


# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    if height is not None and height >= 256: kwargs["height"] = height
    if width is not None and width >= 256: kwargs["width"] = width
    if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
    if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
    noise = ""
    if seed >= 0: kwargs["seed"] = seed
    else:
        rand = randint(1, 500)
        for i in range(rand):
            noise += " "
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
                               prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
        return image
    return None

def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
    if model_str == 'NA':
        return None
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, nprompt,
                                         height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
    finally:
        loop.close()
    return result

   
def add_gallery(image, model_str, gallery):
    if gallery is None: gallery = []
    #with lock:
    if image is not None: gallery.append((image, model_str))
    return gallery

def reset_gallery(gallery):
    return add_gallery(None,"",[])

def load_gallery(gallery,id):
    gallery = reset_gallery(gallery)
    for c in cache_image[f"{id}"]:
        gallery=add_gallery(c[0],c[1],gallery)
    return gallery
def load_gallery_sorted(gallery,id):
    gallery = reset_gallery(gallery)
    for c in sorted(cache_image[f"{id}"], key=itemgetter(1)):
        gallery=add_gallery(c[0],c[1],gallery)
    return gallery
def load_gallery_actu(gallery,id):
    gallery = reset_gallery(gallery)
    for c in cache_image_actu[f"{id}"]:
        gallery=add_gallery(c[0],c[1],gallery)
    return gallery

def add_cache_image(image, model_str,id,cache_image=cache_image):
    if image is not None:
        cache_image[f"{id}"].append((image,model_str))
    #cache_image=sorted(cache_image, key=itemgetter(1))
    return 
def add_cache_image_actu(image, model_str,id,cache_image_actu=cache_image_actu):
    if image is not None:
        bisect.insort(cache_image_actu[f"{id}"],(image, model_str), key=itemgetter(1))
    #cache_image_actu=sorted(cache_image_actu, key=itemgetter(1))
    return
def reset_cache_image(id,cache_image=cache_image):
    cache_image[f"{id}"].clear()
    return 
def reset_cache_image_actu(id,cache_image_actu=cache_image_actu):
    cache_image_actu[f"{id}"].clear()
    return 
def reset_cache_image_all_sessions(cache_image=cache_image,cache_image_actu=cache_image_actu):
    for key, listT in cache_image.items():
        listT.clear()
    for key, listT in cache_image_actu.items():
        listT.clear()
    return 
    
def set_session(id):
    if id==0:
        randTemp=randint(1,MAX_SEED)
        cache_image[f"{randTemp}"]=[]
        cache_image_actu[f"{randTemp}"]=[]
        return gr.Number(visible=False,value=randTemp)
    else :
        return id
def print_info_sessions():
    lenTot=0
    print("###################################")
    print("number of sessions : "+str(len(cache_image)))
    for key, listT in cache_image.items():
        print("session "+key+" : "+str(len(listT)))
        lenTot+=len(listT)
    print("images total = "+str(lenTot))
    print("###################################")
    return

def disp_models(group_model_choice,nb_rep=nb_rep):
    listTemp=[]
    strTemp='\n'
    i=0
    for m in group_model_choice:
        if m not in listTemp:
            listTemp.append(m)
    for m in listTemp:
        i+=1
        strTemp+="\"" + m + "\",\n"
        if i%(8/nb_rep)==0:
            strTemp+="\n"
    return gr.Textbox(label="models",value=strTemp)

def search_models(str_search,tags_plus_models=tags_plus_models):
    output1="\n"
    output2=""
    for m in tags_plus_models[0][2]:
        if m.find(str_search)!=-1:
            output1+="\"" + m + "\",\n"
    outputPlus="\n From tags : \n\n"
    for tag_plus_models in tags_plus_models:
        if str_search.lower() == tag_plus_models[0].lower() and str_search!="":
            for m in tag_plus_models[2]:
                output2+="\"" + m + "\",\n"
    if output2 != "":
        output=output1+outputPlus+output2
    else :
        output=output1
    return gr.Textbox(label="out",value=output)

def search_info(txt_search_info,models_plus_tags=models_plus_tags):
    outputList=[]
    if txt_search_info.find("\"")!=-1:
        start=txt_search_info.find("\"")+1
        end=txt_search_info.find("\"",start)
        m_name=cutStrg(txt_search_info,start,end)
    else :
        m_name = txt_search_info
    for m in models_plus_tags:
        if m_name == m[0]:
            outputList=m[1]
    if len(outputList)==0:
        outputList.append("Model Not Find")
    return gr.Textbox(label="out",value=outputList)


def ratio_chosen(choice_ratio,width,height):
    if choice_ratio == [None,None]:
        return width , height
    else :
        return gr.Slider(label="Width", info="If 0, the default value is used.", maximum=2024, step=32, value=choice_ratio[0]), gr.Slider(label="Height", info="If 0, the default value is used.", maximum=2024, step=32, value=choice_ratio[1])

list_ratios=[["None",[None,None]],
             ["4:1 (2048 x 512)",[2048,512]],
             ["12:5 (1536 x 640)",[1536,640]],
             ["~16:9 (1344 x 768)",[1344,768]],
             ["~3:2 (1216 x 832)",[1216,832]],
             ["~4:3 (1152 x 896)",[1152,896]],
             ["1:1 (1024 x 1024)",[1024,1024]],
             ["~3:4 (896 x 1152)",[896,1152]],
             ["~2:3 (832 x 1216)",[832,1216]],
             ["~9:16 (768 x 1344)",[768,1344]],
             ["5:12 (640 x 1536)",[640,1536]],
             ["1:4 (512 x 2048)",[512,2048]]]

def fonc_add_param(lp,txt_input,neg_input,width,height,steps,cfg,seed):
    lp.append([txt_input,neg_input,width,height,steps,cfg,seed])
    return gr.Dataset(samples=lp) , gr.Dropdown(choices=[["a",lp]], value=lp)
def fonc_del_param(lp,txt_input,neg_input,width,height,steps,cfg,seed):
    if [txt_input,neg_input,width,height,steps,cfg,seed] in lp :
        lp.remove([txt_input,neg_input,width,height,steps,cfg,seed])
    return gr.Dataset(samples=lp) , gr.Dropdown(choices=[["a",lp]], value=lp)
            
def make_me():
        with gr.Row():
            with gr.Column(scale=4):
                with gr.Group():
                    txt_input = gr.Textbox(label='Your prompt:', lines=3, interactive = True)
                    with gr.Accordion("Advanced", open=False, visible=True):
                        neg_input = gr.Textbox(label='Negative prompt:', lines=1, interactive = True)
                        with gr.Row():
                            width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=2024, step=32, value=0, interactive = True)
                            height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=2024, step=32, value=0, interactive = True)
                        with gr.Row():
                            choice_ratio = gr.Dropdown(label="Ratio Width/Height", 
                                                info="OverWrite Width and Height (W*H<1024*1024)", 
                                                show_label=True, choices=list(list_ratios) , interactive = True, value=list_ratios[0][1])
                            choice_ratio.change(ratio_chosen,[choice_ratio,width,height],[width,height])
                        with gr.Row():
                            steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0, interactive = True)
                            cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0, interactive = True)
                            seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, interactive = True)
            param_actu=[txt_input,neg_input,width,height,steps,cfg,seed]
            list_param=gr.Dropdown(choices=[["a",[]]], value=[], visible=False)
            
            add_param=gr.Button("add to the list")
            del_param=gr.Button("delete to the list")
            #gen_button = gr.Button('Generate images', scale=3)
            #stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
            #gen_button.click(lambda: gr.update(interactive=True), None, stop_button)

    
        disp_param = gr.Examples(
            examples=list_param.value,
            inputs=[txt_input,neg_input,width,height,steps,cfg,seed],
            outputs=[txt_input,neg_input,width,height,steps,cfg,seed],
        )
    
        add_param.click(fonc_add_param,[list_param,txt_input,neg_input,width,height,steps,cfg,seed],[disp_param.dataset,list_param])
        del_param.click(fonc_del_param,[list_param,txt_input,neg_input,width,height,steps,cfg,seed],[disp_param.dataset,list_param])
    

js_code = """
    
    console.log('ghgh');
"""

with gr.Blocks(theme="Nymbo/Nymbo_Theme", fill_width=True, css="div.float.svelte-1mwvhlq {    position: absolute;    top: var(--block-label-margin);    left: var(--block-label-margin);    background: none;    border: none;}") as demo: 
    gr.Markdown("<script>" + js_code + "</script>")
    make_me()


# https://www.gradio.app/guides/setting-up-a-demo-for-maximum-performance
#demo.queue(concurrency_count=999) # concurrency_count is deprecated in 4.x
demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(max_threads=400)