Spaces:
Running
Running
File size: 17,903 Bytes
351ffe3 0a68b0d e6e6106 0a68b0d b3d45b6 351ffe3 d860607 351ffe3 eb3e9d8 85b6619 37ca3ce eb3e9d8 098483c 6c1c4b0 c24cfb9 8583df7 5971562 3f38010 ad67e2e 22e71c8 3f38010 ac296b2 3f38010 ad67e2e 3f38010 ad67e2e b3bcfcb ad67e2e b3bcfcb 391e734 b3bcfcb 4751ba3 351ffe3 1f03a5b d33624d 1f03a5b 8c254a2 1f03a5b 06b1f29 8c254a2 1f03a5b 0a68b0d 7c68fee 0a68b0d 391e734 b3bcfcb 5aac1f9 b3bcfcb 391e734 b3bcfcb 351ffe3 eeb3566 d860607 eeb3566 d860607 eeb3566 351ffe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import os
import gradio as gr
from random import randint
from operator import itemgetter
import bisect
from all_models import tags_plus_models,models,models_plus_tags
from datetime import datetime
from externalmod import gr_Interface_load
import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
now2 = 0
inference_timeout = 300
MAX_SEED = 2**32-1
nb_rep=2
nb_mod_dif=20
nb_models=nb_mod_dif*nb_rep
cache_image={}
def load_fn(models):
global models_load
global num_models
global default_models
models_load = {}
num_models = len(models)
i=0
if num_models!=0:
default_models = models[:num_models]
else:
default_models = {}
for model in models:
i+=1
if i%50==0:
print("\n\n\n-------"+str(i)+'/'+str(len(models))+"-------\n\n\n")
if model not in models_load.keys():
try:
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
except Exception as error:
m = gr.Interface(lambda txt: None, ['text'], ['image'])
print(error)
models_load.update({model: m})
load_fn(models)
tags_plus_models_to_list=[]
list_tags=[]
for tag_plus_m in tags_plus_models:
list_tags.append(tag_plus_m[0]+f" ({tag_plus_m[1]})")
def test_pass(test):
if test==os.getenv('p'):
print("ok")
return gr.Dropdown(label="Lists Tags", show_label=True, choices=list(models_test) , interactive = True)
else:
print("nop")
return gr.Dropdown(label="Lists Tags", show_label=True, choices=list([]) , interactive = True)
def test_pass_aff(test):
if test==os.getenv('p'):
return gr.Accordion( open=True, visible=True) ,gr.Row(visible=False)
else:
return gr.Accordion( open=True, visible=False) , gr.Row()
# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
from pathlib import Path
kwargs = {}
if height is not None and height >= 256: kwargs["height"] = height
if width is not None and width >= 256: kwargs["width"] = width
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
noise = ""
if seed >= 0: kwargs["seed"] = seed
else:
rand = randint(1, 500)
for i in range(rand):
noise += " "
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except (Exception, asyncio.TimeoutError) as e:
print(e)
print(f"Task timed out: {model_str}")
if not task.done(): task.cancel()
result = None
if task.done() and result is not None:
with lock:
png_path = "image.png"
result.save(png_path)
image = str(Path(png_path).resolve())
return image
return None
def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
if model_str == 'NA':
return None
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
height, width, steps, cfg, seed, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"Task aborted: {model_str}")
result = None
finally:
loop.close()
return result
def add_gallery(image, model_str, gallery):
if gallery is None: gallery = []
#with lock:
if image is not None: gallery.append((image, model_str))
return gallery
def reset_gallery(gallery):
return add_gallery(None,"",[])
def load_gallery(gallery,id):
gallery = reset_gallery(gallery)
for c in cache_image[f"{id}"]:
gallery=add_gallery(c[0],c[1],gallery)
return gallery
def load_gallery_sorted(gallery,id):
gallery = reset_gallery(gallery)
for c in sorted(cache_image[f"{id}"], key=itemgetter(1)):
gallery=add_gallery(c[0],c[1],gallery)
return gallery
def add_cache_image(image, model_str,id,cache_image=cache_image):
if image is not None:
cache_image[f"{id}"].append((image,model_str))
#cache_image=sorted(cache_image, key=itemgetter(1))
return
def reset_cache_image(id,cache_image=cache_image):
cache_image[f"{id}"].clear()
return
def reset_cache_image_all_sessions(cache_image=cache_image):
for key, listT in cache_image.items():
listT.clear()
return
def set_session(id):
if id==0:
randTemp=randint(1,MAX_SEED)
cache_image[f"{randTemp}"]=[]
return gr.Number(visible=False,value=randTemp)
else :
return id
def print_info_sessions():
lenTot=0
print("###################################")
print("number of sessions : "+str(len(cache_image)))
for key, listT in cache_image.items():
print("session "+key+" : "+str(len(listT)))
lenTot+=len(listT)
print("images total = "+str(lenTot))
print("###################################")
return
def disp_models(group_model_choice,nb_rep=nb_rep):
listTemp=[]
strTemp='\n'
i=0
for m in group_model_choice:
if m not in listTemp:
listTemp.append(m)
for m in listTemp:
i+=1
strTemp+="\"" + m + "\",\n"
if i%(8/nb_rep)==0:
strTemp+="\n"
return gr.Textbox(label="models",value=strTemp)
def search_models(str_search,tags_plus_models=tags_plus_models):
output1="\n"
output2=""
for m in tags_plus_models[0][2]:
if m.find(str_search)!=-1:
output1+="\"" + m + "\",\n"
outputPlus="\n From tags : \n\n"
for tag_plus_models in tags_plus_models:
if str_search.lower() == tag_plus_models[0].lower() and str_search!="":
for m in tag_plus_models[2]:
output2+="\"" + m + "\",\n"
if output2 != "":
output=output1+outputPlus+output2
else :
output=output1
return gr.Textbox(label="out",value=output)
def search_info(txt_search_info,models_plus_tags=models_plus_tags):
outputList=[]
if txt_search_info.find("\"")!=-1:
start=txt_search_info.find("\"")+1
end=txt_search_info.find("\"",start)
m_name=cutStrg(txt_search_info,start,end)
else :
m_name = txt_search_info
for m in models_plus_tags:
if m_name == m[0]:
outputList=m[1]
if len(outputList)==0:
outputList.append("Model Not Find")
return gr.Textbox(label="out",value=outputList)
def ratio_chosen(choice_ratio,width,height):
if choice_ratio == [None,None]:
return width , height
else :
return gr.Slider(label="Width", info="If 0, the default value is used.", maximum=2024, step=32, value=choice_ratio[0]), gr.Slider(label="Height", info="If 0, the default value is used.", maximum=2024, step=32, value=choice_ratio[1])
list_ratios=[["None",[None,None]],
["4:1 (2048 x 512)",[2048,512]],
["12:5 (1536 x 640)",[1536,640]],
["~16:9 (1344 x 768)",[1344,768]],
["~3:2 (1216 x 832)",[1216,832]],
["~4:3 (1152 x 896)",[1152,896]],
["1:1 (1024 x 1024)",[1024,1024]],
["~3:4 (896 x 1152)",[896,1152]],
["~2:3 (832 x 1216)",[832,1216]],
["~9:16 (768 x 1344)",[768,1344]],
["5:12 (640 x 1536)",[640,1536]],
["1:4 (512 x 2048)",[512,2048]]]
def fonc_add_param(lp,txt_input,neg_input,width,height,steps,cfg,seed):
if lp == [["","",0,0,0,0,-1]]:
lp.remove(["","",0,0,0,0,-1])
lp.append([txt_input,neg_input,width,height,steps,cfg,seed])
return gr.Dataset(samples=lp) , gr.Dropdown(choices=[["a",lp]], value=lp)
def fonc_del_param(lp,txt_input,neg_input,width,height,steps,cfg,seed):
if [txt_input,neg_input,width,height,steps,cfg,seed] in lp :
lp.remove([txt_input,neg_input,width,height,steps,cfg,seed])
if lp == []:
lp.append(["","",0,0,0,0,-1])
return gr.Dataset(samples=lp) , gr.Dropdown(choices=[["a",lp]], value=lp)
def fonc_load_info(nb_of_models_to_gen,index_tag,index_first_model):
str_temp=""
list_models_temp=[]
if index_first_model+nb_of_models_to_gen>len(tags_plus_models[index_tag][2]):
if nb_of_models_to_gen>len(tags_plus_models[index_tag][2]):
str_temp+="warning : to many model chosen"
else:
str_temp+="warning : first model to close to the last model"
nb_of_models_to_gen= len(tags_plus_models[index_tag][2])-index_first_model
str_temp+=f" - only {nb_of_models_to_gen} will be use\n\n"
str_temp+="list of models use (from "
str_temp+=f"{index_first_model+1}/{len(tags_plus_models[index_tag][2])} to {index_first_model+nb_of_models_to_gen}/{len(tags_plus_models[index_tag][2])}) :\n\n"
for i in range(nb_of_models_to_gen):
list_models_temp.append(tags_plus_models[index_tag][2][i+index_first_model])
str_temp+=f"\"{tags_plus_models[index_tag][2][i+index_first_model]}\",\n"
return nb_of_models_to_gen,gr.Textbox(str_temp),gr.Dropdown(choices=[["",list_models_temp]], value=list_models_temp )
def fonc_load_info_custom(nb_of_models_to_gen,list_model_custom,index_first_model):
str_temp=""
list_models_temp=[]
if index_first_model+nb_of_models_to_gen>len(list_model_custom):
if nb_of_models_to_gen>len(list_model_custom):
str_temp+="warning : to many model chosen"
else:
str_temp+="warning : first model to close to the last model"
nb_of_models_to_gen= len(list_model_custom)-index_first_model
str_temp+=f" - only {nb_of_models_to_gen} will be use\n\n"
str_temp+="list of models CUSTOM use (from "
str_temp+=f"{index_first_model+1}/{len(list_model_custom)} to {index_first_model+nb_of_models_to_gen}/{len(list_model_custom)}) :\n\n"
for i in range(nb_of_models_to_gen):
list_models_temp.append(list_model_custom[i+index_first_model])
str_temp+=f"\"{list_model_custom[i+index_first_model]}\",\n"
return nb_of_models_to_gen,gr.Textbox(str_temp),gr.Dropdown(choices=[["",list_models_temp]], value=list_models_temp )
def cutStrg(longStrg,start,end):
shortStrg=''
for i in range(end-start):
shortStrg+=longStrg[start+i]
return shortStrg
def aff_models_perso(txt_list_perso,models=models):
list_perso=[]
t1=True
start=txt_list_perso.find('\"')
if start!=-1:
while t1:
start+=1
end=txt_list_perso.find('\"',start)
if end != -1:
txtTemp=cutStrg(txt_list_perso,start,end)
if txtTemp in models:
list_perso.append(cutStrg(txt_list_perso,start,end))
else :
t1=False
start=txt_list_perso.find('\"',end+1)
if start==-1:
t1=False
return gr.Dropdown(choices=[["",list_perso]], value=list_perso )
def make_me():
with gr.Column():
with gr.Group():
with gr.Row():
with gr.Column(scale=4):
txt_input = gr.Textbox(label='Your prompt:', lines=4, interactive = True)
neg_input = gr.Textbox(label='Negative prompt:', lines=4, interactive = True)
with gr.Column(scale=4):
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=2024, step=32, value=0, interactive = True)
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=2024, step=32, value=0, interactive = True)
with gr.Row():
choice_ratio = gr.Dropdown(label="Ratio Width/Height",
info="OverWrite Width and Height (W*H<1024*1024)",
show_label=True, choices=list(list_ratios) , interactive = True, value=list_ratios[0][1])
choice_ratio.change(ratio_chosen,[choice_ratio,width,height],[width,height])
with gr.Row():
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0, interactive = True)
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0, interactive = True)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, interactive = True)
add_param=gr.Button("Add to the list")
del_param=gr.Button("Delete to the list")
#gen_button = gr.Button('Generate images', scale=3)
#stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
#gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
list_param=gr.Dropdown(choices=[["a",[["","",0,0,0,0,-1]]]], value=[["","",0,0,0,0,-1]], visible=False)
disp_param = gr.Examples(
label="list of prompt",
examples=list_param.value,
inputs=[txt_input,neg_input,width,height,steps,cfg,seed],
outputs=[txt_input,neg_input,width,height,steps,cfg,seed],
)
add_param.click(fonc_add_param,[list_param,txt_input,neg_input,width,height,steps,cfg,seed],[disp_param.dataset,list_param])
del_param.click(fonc_del_param,[list_param,txt_input,neg_input,width,height,steps,cfg,seed],[disp_param.dataset,list_param])
with gr.Row():
list_models_to_gen=gr.Dropdown(choices=[["",[]]], value=[], visible=False)
disp_info=gr.Textbox(label="Info")
with gr.Column():
with gr.Row():
nb_images_by_prompt=gr.Number(2,label="Number of images by prompt:",interactive=True)
nb_of_models_to_gen=gr.Number(10,label="Number of Models:",interactive=True)
index_tag=gr.Dropdown(label="Tag",choices=list(list_tags),type="index")
index_first_model=gr.Dropdown(label="First model",choices=list([]), type="index")
index_tag.change(lambda i:gr.Dropdown(choices=list([f"({j+1}/{len(tags_plus_models[i][2])}) {tags_plus_models[i][2][j]}" for j in range(len(tags_plus_models[i][2]))])),
index_tag,index_first_model)
load_info=gr.Button("Load Models")
load_info.click(fonc_load_info,[nb_of_models_to_gen,index_tag,index_first_model],[nb_of_models_to_gen,disp_info,list_models_to_gen])
with gr.Accordion("Models Custom",open=False) :
with gr.Row():
text_list_model_custom=gr.Textbox(label="List Models Custom")
with gr.Column():
list_model_custom=gr.Dropdown(choices=[["",[]]], value=[], visible=False)
#use_models_custom=gr.Radio("Use Models Custom",value=False)
cut_model_custom=gr.Button("Cut Text Models Custom")
cut_model_custom.click(aff_models_perso,[text_list_model_custom],[list_model_custom])
index_first_model_custom=gr.Dropdown(label="First model",choices=list([]), type="index")
list_model_custom.change(lambda li:gr.Dropdown(choices=list([f"({j+1}/{len(li)}) {li[j]}" for j in range(len(li))])),
[list_model_custom],index_first_model_custom)
load_model_custom=gr.Button("Load Models Custom")
load_model_custom.click(fonc_load_info_custom,[nb_of_models_to_gen,list_model_custom,index_first_model_custom],[nb_of_models_to_gen,disp_info,list_models_to_gen])
with gr.Column():
with gr.Row():
id_session=gr.Number(visible=False,value=0)
nb_req_simult=gr.Number(50,"Number simultaneous request")
nb_req_simult_max_by_mod=gr.Number(2,"Number max simultaneous request by model")
with gr.Row():
outputs=[]
for i in len(nb_req_simult):
outputs.append(gr.Image(None,interactive=False,render=False))
#gen_button.click(set_session, id_session, id_session)
js_code = """
console.log('ghgh');
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", fill_width=True, css="div.float.svelte-1mwvhlq { position: absolute; top: var(--block-label-margin); left: var(--block-label-margin); background: none; border: none;}") as demo:
gr.Markdown("<script>" + js_code + "</script>")
make_me()
# https://www.gradio.app/guides/setting-up-a-demo-for-maximum-performance
#demo.queue(concurrency_count=999) # concurrency_count is deprecated in 4.x
demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(max_threads=400) |