File size: 10,473 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import torch.distributed as dist

from vlmeval.config import supported_VLM
from vlmeval.dataset import build_dataset
from vlmeval.inference import infer_data_job
from vlmeval.inference_video import infer_data_job_video
from vlmeval.inference_mt import infer_data_job_mt
from vlmeval.smp import *
from vlmeval.utils.result_transfer import MMMU_result_transfer, MMTBench_result_transfer


def parse_args():
    parser = argparse.ArgumentParser()
    # Essential Args
    parser.add_argument('--data', type=str, nargs='+', required=True)
    parser.add_argument('--model', type=str, nargs='+', required=True)
    # Args that only apply to Video Dataset
    parser.add_argument('--nframe', type=int, default=8)
    parser.add_argument('--pack', action='store_true')
    parser.add_argument('--use-subtitle', action='store_true')
    # Work Dir
    parser.add_argument('--work-dir', type=str, default='./outputs', help='select the output directory')
    # Infer + Eval or Infer Only
    parser.add_argument('--mode', type=str, default='all', choices=['all', 'infer'])
    # API Kwargs, Apply to API VLMs and Judge API LLMs
    parser.add_argument('--nproc', type=int, default=4, help='Parallel API calling')
    parser.add_argument('--retry', type=int, default=None, help='retry numbers for API VLMs')
    # Explicitly Set the Judge Model
    parser.add_argument('--judge', type=str, default=None)
    # Logging Utils
    parser.add_argument('--verbose', action='store_true')
    # Configuration for Resume
    # Ignore: will not rerun failed VLM inference
    parser.add_argument('--ignore', action='store_true', help='Ignore failed indices. ')
    # Rerun: will remove all evaluation temp files
    parser.add_argument('--rerun', action='store_true')
    args = parser.parse_args()
    return args


def main():
    logger = get_logger('RUN')

    args = parse_args()
    assert len(args.data), '--data should be a list of data files'

    if args.retry is not None:
        for k, v in supported_VLM.items():
            if hasattr(v, 'keywords') and 'retry' in v.keywords:
                v.keywords['retry'] = args.retry
                supported_VLM[k] = v
            if hasattr(v, 'keywords') and 'verbose' in v.keywords:
                v.keywords['verbose'] = args.verbose
                supported_VLM[k] = v

    rank, world_size = get_rank_and_world_size()
    if world_size > 1:
        local_rank = os.environ.get('LOCAL_RANK', 0)
        torch.cuda.set_device(int(local_rank))
        dist.init_process_group(backend='nccl', timeout=datetime.timedelta(seconds=10800))

    for _, model_name in enumerate(args.model):
        model = None

        pred_root = osp.join(args.work_dir, model_name)
        os.makedirs(pred_root, exist_ok=True)

        for _, dataset_name in enumerate(args.data):
            dataset_kwargs = {}
            if dataset_name in ['MMLongBench_DOC', 'DUDE', 'DUDE_MINI', 'SLIDEVQA', 'SLIDEVQA_MINI']:
                dataset_kwargs['model'] = model_name
            if dataset_name == 'MMBench-Video':
                dataset_kwargs['pack'] = args.pack
            if dataset_name == 'Video-MME':
                dataset_kwargs['use_subtitle'] = args.use_subtitle

            # If distributed, first build the dataset on the main process for doing preparation works
            if world_size > 1:
                dataset = build_dataset(dataset_name, **dataset_kwargs) if rank == 0 else None
                dist.barrier()
                dataset_list = [dataset]
                dist.broadcast_object_list(dataset_list, src=0)
                dataset = dataset_list[0]
            else:
                dataset = build_dataset(dataset_name, **dataset_kwargs)
            if dataset is None:
                logger.error(f'Dataset {dataset_name} is not valid, will be skipped. ')
                continue

            result_file = f'{pred_root}/{model_name}_{dataset_name}.xlsx'
            if dataset_name in ['MMBench-Video']:
                packstr = 'pack' if args.pack else 'nopack'
                result_file = f'{pred_root}/{model_name}_{dataset_name}_{args.nframe}frame_{packstr}.xlsx'
            elif dataset.MODALITY == 'VIDEO':
                if args.pack:
                    logger.info(f'{dataset_name} not support Pack Mode, directly change to unpack')
                    args.pack = False
                packstr = 'pack' if args.pack else 'nopack'
                result_file = f'{pred_root}/{model_name}_{dataset_name}_{args.nframe}frame_{packstr}.xlsx'
                if dataset_name in ['Video-MME']:
                    subtitlestr = 'subs' if args.use_subtitle else 'nosubs'
                    result_file = result_file.replace('.xlsx', f'_{subtitlestr}.xlsx')

            if dataset.TYPE == 'MT':
                result_file = result_file.replace('.xlsx', '.tsv')

            if osp.exists(result_file) and args.rerun:
                for keyword in ['openai', 'gpt', 'auxmatch']:
                    os.system(f'rm {pred_root}/{model_name}_{dataset_name}_{keyword}*')

            if model is None:
                model = model_name  # which is only a name

            # Perform the Inference
            if dataset.MODALITY == 'VIDEO':
                model = infer_data_job_video(
                    model,
                    work_dir=pred_root,
                    model_name=model_name,
                    dataset=dataset,
                    nframe=args.nframe,
                    pack=args.pack,
                    verbose=args.verbose,
                    subtitle=args.use_subtitle,
                    api_nproc=args.nproc)
            elif dataset.TYPE == 'MT':
                model = infer_data_job_mt(
                    model,
                    work_dir=pred_root,
                    model_name=model_name,
                    dataset=dataset,
                    verbose=args.verbose,
                    api_nproc=args.nproc,
                    ignore_failed=args.ignore)
            else:
                model = infer_data_job(
                    model,
                    work_dir=pred_root,
                    model_name=model_name,
                    dataset=dataset,
                    verbose=args.verbose,
                    api_nproc=args.nproc,
                    ignore_failed=args.ignore)

            # Set the judge kwargs first before evaluation or dumping
            judge_kwargs = {
                'nproc': args.nproc,
                'verbose': args.verbose,
            }
            if args.retry is not None:
                judge_kwargs['retry'] = args.retry
            if args.judge is not None:
                judge_kwargs['model'] = args.judge
            else:
                if dataset.TYPE in ['MCQ', 'Y/N']:
                    judge_kwargs['model'] = 'chatgpt-0125'
                elif listinstr(['MMVet', 'MathVista', 'LLaVABench', 'MMBench-Video', 'MathVision'], dataset_name):
                    judge_kwargs['model'] = 'gpt-4-turbo'
                elif listinstr(['MMLongBench', 'MMDU', 'DUDE', 'DUDE_MINI', 'SLIDEVQA', 'SLIDEVQA_MINI'], dataset_name):
                    judge_kwargs['model'] = 'gpt-4o'
            if 'OPENAI_API_KEY_JUDGE' in os.environ and len(os.environ['OPENAI_API_KEY_JUDGE']):
                judge_kwargs['key'] = os.environ['OPENAI_API_KEY_JUDGE']
            if 'OPENAI_API_BASE_JUDGE' in os.environ and len(os.environ['OPENAI_API_BASE_JUDGE']):
                judge_kwargs['api_base'] = os.environ['OPENAI_API_BASE_JUDGE']

            if rank == 0:
                if dataset_name in ['MMMU_TEST']:
                    result_json = MMMU_result_transfer(result_file)
                    logger.info(f'Transfer MMMU_TEST result to json for official evaluation, '
                                f'json file saved in {result_json}')  # noqa: E501
                    continue
                elif 'MMT-Bench_ALL' in dataset_name:
                    submission_file = MMTBench_result_transfer(result_file, **judge_kwargs)
                    logger.info(f'Extract options from prediction of MMT-Bench FULL split for official evaluation '
                                f'(https://eval.ai/web/challenges/challenge-page/2328/overview), '
                                f'submission file saved in {submission_file}')  # noqa: E501
                    continue
                elif 'MLLMGuard_DS' in dataset_name:
                    logger.info('The evaluation of MLLMGuard_DS is not supported yet. ')  # noqa: E501
                    continue
                elif 'AesBench_TEST' == dataset_name:
                    logger.info(f'The results are saved in {result_file}. '
                                f'Please send it to the AesBench Team via [email protected].')  # noqa: E501
                    continue

            if dataset_name in [
                'MMBench_TEST_CN', 'MMBench_TEST_EN', 'MMBench', 'MMBench_CN',
                'MMBench_TEST_CN_V11', 'MMBench_TEST_EN_V11', 'MMBench_V11', 'MMBench_CN_V11'
            ]:
                if not MMBenchOfficialServer(dataset_name):
                    logger.error(
                        f'Can not evaluate {dataset_name} on non-official servers, '
                        'will skip the evaluation. '
                    )
                    continue

            eval_proxy = os.environ.get('EVAL_PROXY', None)
            old_proxy = os.environ.get('HTTP_PROXY', '')

            if rank == 0 and args.mode == 'all':
                if eval_proxy is not None:
                    proxy_set(eval_proxy)

                eval_results = dataset.evaluate(result_file, **judge_kwargs)
                if eval_results is not None:
                    assert isinstance(eval_results, dict) or isinstance(eval_results, pd.DataFrame)
                    logger.info(f'The evaluation of model {model_name} x dataset {dataset_name} has finished! ')
                    logger.info('Evaluation Results:')
                if isinstance(eval_results, dict):
                    logger.info('\n' + json.dumps(eval_results, indent=4))
                elif isinstance(eval_results, pd.DataFrame):
                    if len(eval_results) < len(eval_results.columns):
                        eval_results = eval_results.T
                    logger.info('\n' + tabulate(eval_results))

                if eval_proxy is not None:
                    proxy_set(old_proxy)


if __name__ == '__main__':
    load_env()
    main()