File size: 7,455 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import sys
sys.path.append('XGBoost_Prediction_Model/')

import warnings
warnings.filterwarnings("ignore")
import Predict
import torch
import numpy as np
import os
from os.path import isfile, isdir, join
from Magazine_Optimization import *

mypath = 'XGBoost_Prediction_Model/Magazine_Optimization_Demo/Magazines'
results = {}

#Target Magazine folders
Target = [join(mypath, 'M1'), join(mypath, 'M3')]

for Tg in Target:
    dir_list_target = []
    for sub_f in os.listdir(Tg):
        if isdir(join(Tg, sub_f)):
            sub_path_temp = join(Tg, sub_f)
            if (sub_f.split('_')[0]) == 'Jpg':
                dir_list_target = os.listdir(sub_path_temp)
                dir_list_target.sort()
                for i in range(len(dir_list_target)):
                    dir_list_target[i] = join(sub_path_temp,dir_list_target[i])
            else:
                Slots_target = torch.load(join(sub_path_temp,'Slots')).astype('int32')
                # Sizes_target = torch.load(join(sub_path_temp,'surfaces'))
                # Product_Groups_target = torch.load(join(sub_path_temp,'Prod_Cat'))
                Textboxes_target = torch.load(join(sub_path_temp,'Textboxes'))
                Obj_and_Topics_target = torch.load(join(sub_path_temp,'Obj_and_Topics'))

    for f in os.listdir(mypath):
        if isdir(join(mypath, f)) and f != 'M1' and f != 'M3':
            print('Currently processing Target Magazine '+Tg+' with Ad Magazine '+f+'......')
            path_temp_ad = join(mypath, f)
            dir_list_ad = []
            for sub_f in os.listdir(path_temp_ad):
                if isdir(join(path_temp_ad, sub_f)):
                    sub_path_temp = join(path_temp_ad, sub_f)
                    if (sub_f.split('_')[0]) == 'Jpg':
                        dir_list_ad = os.listdir(sub_path_temp)
                        dir_list_ad.sort()
                        for i in range(len(dir_list_ad)):
                            dir_list_ad[i] = join(sub_path_temp,dir_list_ad[i])
                    else:
                        Slots_ad = torch.load(join(sub_path_temp,'Slots')).astype('int32')
                        Sizes_ad = torch.load(join(sub_path_temp,'surfaces'))
                        Product_Groups_ad = torch.load(join(sub_path_temp,'Prod_Cat'))
                        Textboxes_ad = torch.load(join(sub_path_temp,'Textboxes'))
                        Obj_and_Topics_ad = torch.load(join(sub_path_temp,'Obj_and_Topics'))

            result = Preference_Matrix_different_magazine(dir_list_target, dir_list_ad,
                                                          Slots_target, Slots_ad,
                                                          Product_Groups_ad, Sizes_ad, 
                                                          Textboxes_Target=Textboxes_target, Textboxes_Ad=Textboxes_ad,
                                                          Obj_and_Topics_Target=Obj_and_Topics_target, Obj_and_Topics_Ad=Obj_and_Topics_ad)
            if result is not None:
                Ad_Gaze, Brand_Gaze, Double_Page_Ad_Attention, Double_Page_Brand_Attention, Assign_ids_ad, Assign_ids_target = result

                #Assignement Problem
                workers = []
                jobs = []
                N = np.max(Ad_Gaze.shape)
                M_small = np.min(Ad_Gaze.shape)
                for i in range(N):
                    workers.append(i+1)
                    jobs.append(i+1)
                zeros_aux = np.zeros((N,N))
                zeros_aux[:Ad_Gaze.shape[0],:] = Ad_Gaze
                Ad_Gaze = zeros_aux
                zeros_aux = np.zeros((N,N))
                zeros_aux[:Brand_Gaze.shape[0],:] = Brand_Gaze
                Brand_Gaze = zeros_aux

                max_ad_attention = np.max(Ad_Gaze)
                max_brand_attention = np.max(Brand_Gaze)
                Ad_Gaze_cost = max_ad_attention - Ad_Gaze
                Brand_Gaze_cost = max_brand_attention - Brand_Gaze

                Prob_solved_Ad = Assignment_Problem(Ad_Gaze_cost, workers, jobs)
                Prob_solved_Brand = Assignment_Problem(Brand_Gaze_cost, workers, jobs)

                # Print the variables optimized value
                print('If based on maximizing Overall Ad Attention: ')
                strategy_AG = ''
                BG_under_AG_assignment = 0
                for v in Prob_solved_Ad.variables():
                    if v.varValue == 1:
                        curr = (v.name).split('_')
                        BG_under_AG_assignment += Brand_Gaze_cost[int(curr[1])-1,int(curr[2])-1]
                        if int(curr[1]) <= M_small:
                            temp = curr[0]+' Ad '+str(Assign_ids_ad[int(curr[1])-1])+' to Counterpage '+str(Assign_ids_target[int(curr[2])-1])
                            strategy_AG += temp+'; '
                            print(temp)
                    
                # The optimised objective function value is printed to the screen
                m_ad = N*max_ad_attention - value(Prob_solved_Ad.objective) + sum(Double_Page_Ad_Attention)
                print("Maximized Ad Attention = ", m_ad, " sec.")
                print("Maximized Average Ad attention on each Ad = ", (N*max_ad_attention - value(Prob_solved_Ad.objective) + sum(Double_Page_Ad_Attention))/(N + len(Double_Page_Ad_Attention)), " sec.")
                print()

                # Print the variables optimized value
                print('If based on maximizing Overall Brand Attention: ')
                strategy_BG = ''
                for v in Prob_solved_Brand.variables():
                    if v.varValue == 1:
                        curr = (v.name).split('_')
                        if int(curr[1]) <= M_small:
                            temp = curr[0]+' Ad '+str(Assign_ids_ad[int(curr[1])-1])+' to Counterpage '+str(Assign_ids_target[int(curr[2])-1])
                            strategy_BG += temp+'; '
                            print(temp)
                    
                # The optimised objective function value is printed to the screen
                m_brand = N*max_brand_attention - value(Prob_solved_Brand.objective) + sum(Double_Page_Brand_Attention)
                BG_under_AG_assignment = N*max_brand_attention - BG_under_AG_assignment + sum(Double_Page_Brand_Attention)
                print("Maximized Brand Attention = ", m_brand, " sec.")
                print("New Brand Gaze under AG assignment = ", BG_under_AG_assignment, " sec.")
                print("Maximized Average Brand attention on each Ad = ", (N*max_brand_attention - value(Prob_solved_Brand.objective) + sum(Double_Page_Brand_Attention))/(N + len(Double_Page_Brand_Attention)), " sec.")
                print('End of Magazine '+f+'......')

                results[Tg+' '+f] = {'AG':[strategy_AG,m_ad,np.trace(Ad_Gaze)], 'BG':[strategy_BG,m_brand,np.trace(Brand_Gaze),BG_under_AG_assignment]}
                print()
                print()
            else:
                print("Ads cannot be fully assigned!")


print()
print('Summary: ')
for f in list(results.keys()):
    print('Magazine '+f+': ')
    dict_curr = results[f]
    print('Ad Gaze: ')
    print('Strategy: '+dict_curr['AG'][0])
    print('max Attention: ',dict_curr['AG'][1])
    print('------------------------')
    print('Brand Gaze: ')
    print('Strategy: '+dict_curr['BG'][0])
    print('max Attention: ',dict_curr['BG'][1])
    print('------------------------')
    print()