File size: 5,965 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import sys
sys.path.append('../XGBoost_Prediction_Model/')

import warnings
warnings.filterwarnings("ignore")
import Predict
import XGBoost_utils
import torch
import numpy as np
import os
from os.path import isfile, isdir, join

text_detection_model_path = '../XGBoost_Prediction_Model/EAST-Text-Detection/frozen_east_text_detection.pb'
LDA_model_pth = '../XGBoost_Prediction_Model/LDA_Model_trained/lda_model_best_tot.model'
training_ad_text_dictionary_path = '../XGBoost_Prediction_Model/LDA_Model_trained/object_word_dictionary'
training_lang_preposition_path = '../XGBoost_Prediction_Model/LDA_Model_trained/dutch_preposition'

Adversarial_types = ['Newspaper', 'Banner', 'Multiple Ads', 'Outdoor', 'Others']
mypath = '../XGBoost_Prediction_Model/Adversarial Samples New'

ad_locations_total = {
    'Newspaper': [0,0,0,0,0,0,0,0,0,0,0],
    'Banner': [2,2,2,2,2,2,2,2,2,2,2],
    'Multiple Ads': [0,0,1,0,0,1,0,0,0,0,0],
    'Outdoor': [2,2,2,2,2,2,2,2,2,2,2],
    'Others': [1,0,1,0,2,0,1,1,0,0,0]
}

Predicted_AG = {}
Predicted_BG = {}
GT_AG = {}
GT_BG = {}

for f in os.listdir(mypath):
    # if f != 'Outdoor':
    #     continue
    if isdir(join(mypath, f)):
        print('Currently processing samples of type '+f+'......')
        path_temp = join(mypath, f)
        surfaces = torch.load(join(path_temp,f+'_Adversarial_Surfaces'))
        print(surfaces)
        categories = torch.load(join(path_temp,f+'_Adversarial_Categories'))
        ad_locations_curr = ad_locations_total[f]
        ad_embeddings = torch.load(join(path_temp,f+'_ad_topic_embeddings'))
        ctpg_embeddings = torch.load(join(path_temp,f+'_ctpg_topic_embeddings'))
        GT_AG[f] = torch.load(join(path_temp,'AGs'))
        GT_BG[f] = torch.load(join(path_temp,'BGs'))

        #f is, e.g. Outdoor
        #sub_f is, e.g. 1,2,...,11
        AG_predictions_per_type = np.zeros(11)
        BG_predictions_per_type = np.zeros(11)
        for sub_f in os.listdir(path_temp):
            if isdir(join(path_temp, sub_f)):
                print('Sample Number '+sub_f+'...... ')
                context_pth = None
                for imgs in os.listdir(join(path_temp, sub_f)):
                    jpg_removed_split = imgs[:-4].split(' ')
                    if len(jpg_removed_split) > 1:
                        img_type = jpg_removed_split[-1]
                        if img_type == 'Ad':
                            ad_pth = join(join(path_temp, sub_f),imgs)
                            print(ad_pth)
                        elif img_type == 'Context':
                            context_pth = join(join(path_temp, sub_f),imgs)
                
                #Start Predicting
                sample_num = int(sub_f)-1
                
                AG = Predict.Ad_Gaze_Prediction(input_ad_path=ad_pth, input_ctpg_path=context_pth, text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth, 
                     training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path, training_language='dutch', 
                     ad_embeddings=ad_embeddings[sample_num].reshape(1,768), ctpg_embeddings=ctpg_embeddings[sample_num].reshape(1,768),
                     surface_sizes=list(surfaces[sample_num]), Product_Group=list(categories[sample_num]),
                     obj_detection_model_pth=None, ad_location=ad_locations_curr[sample_num], num_topic=20, Gaze_Time_Type='Ad')
                AG_predictions_per_type[sample_num] = AG

                BG = Predict.Ad_Gaze_Prediction(input_ad_path=ad_pth, input_ctpg_path=context_pth, text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth, 
                     training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path, training_language='dutch', 
                     ad_embeddings=ad_embeddings[sample_num].reshape(1,768), ctpg_embeddings=ctpg_embeddings[sample_num].reshape(1,768),
                     surface_sizes=list(surfaces[sample_num]), Product_Group=list(categories[sample_num]),
                     obj_detection_model_pth=None, ad_location=ad_locations_curr[sample_num], num_topic=20, Gaze_Time_Type='Brand')
                BG_predictions_per_type[sample_num] = BG

        Predicted_AG[f] = AG_predictions_per_type
        Predicted_BG[f] = BG_predictions_per_type

print("Final results: ")
diffs_rmse = {}
diffs_rmsrpd = {}
GT_AG_tot = []
GT_BG_tot = []
Pred_AG_tot = []
Pred_BG_tot = []
for key in Predicted_AG.keys():
    print(key)
    print('AGs', Predicted_AG[key])
    print('BGs', Predicted_BG[key])
    Pred_AG_tot.append(Predicted_AG[key])
    Pred_BG_tot.append(Predicted_BG[key])
    GT_AG_tot.append(GT_AG[key])
    GT_BG_tot.append(GT_BG[key])

    rmse1 = np.sqrt(np.mean((GT_AG[key]-Predicted_AG[key])**2))
    rmse2 = np.sqrt(np.mean((GT_BG[key]-Predicted_BG[key])**2))
    diffs_rmse[key] = (rmse1, rmse2)

    rmsrpd1 = XGBoost_utils.RMSRPD(GT_AG[key],Predicted_AG[key])
    rmsrpd2 = XGBoost_utils.RMSRPD(GT_BG[key],Predicted_BG[key])
    diffs_rmsrpd[key] = (rmsrpd1, rmsrpd2)

    print()

Pred_AG_tot = np.concatenate(Pred_AG_tot)
Pred_BG_tot = np.concatenate(Pred_BG_tot)
GT_AG_tot = np.concatenate(GT_AG_tot)
GT_BG_tot = np.concatenate(GT_BG_tot)
print("RMSE: ")
print("Total AG: ", np.sqrt(np.mean((Pred_AG_tot-GT_AG_tot)**2)))
print("Total BG: ", np.sqrt(np.mean((Pred_BG_tot-GT_BG_tot)**2)))
print()
for key in diffs_rmse.keys():
    print(key, diffs_rmse[key][0], diffs_rmse[key][1])
print()

print("RMSRPD: ")
print("Total AG: ", XGBoost_utils.RMSRPD(Pred_AG_tot,GT_AG_tot))
print("Total BG: ", XGBoost_utils.RMSRPD(Pred_BG_tot,GT_BG_tot))
print()
for key in diffs_rmsrpd.keys():
    print(key, diffs_rmsrpd[key][0], diffs_rmsrpd[key][1])
print()

print("Correlation: ")
print("Total AG: ", np.corrcoef(Pred_AG_tot, GT_AG_tot))
print("Total BG: ", np.corrcoef(Pred_BG_tot, GT_BG_tot))