File size: 5,263 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
## OmniLMM-12B

> OmniLMM-12B is released at early time of this project. We recommond you to use our [recently released models](./README_en.md), for better performance and efficiency.

> Archieve at: 2024-05-19


**OmniLMM-12B** is the most capable version. The model is built based on EVA02-5B and Zephyr-7B-β, connected with a perceiver resampler layer, and trained on multimodal data in a curriculum fashion. The model has three notable features:

- 🔥 **Strong Performance.** 

  OmniLMM-12B achieves **leading performance** among models with comparable sizes, surpassing established LMMs on multiple benchmarks (including MME, MMBench, SEED-Bench, etc). The model also endows rich multi-modal world knowledge.

- 🏆 **Trustworthy Behavior.** 

  LMMs are known for suffering from hallucination, often generating text that is not factually grounded in images (e.g., faithfully describing non-existing objects in images). OmniLMM-12B is **the first state-of-the-art open-source LMM aligned via multimodal RLHF for trustworthy behavior** (using the recent [RLHF-V](https://rlhf-v.github.io/) technique). It **ranks #1** among open-source models on [MMHal-Bench](https://huggingface.co/datasets/Shengcao1006/MMHal-Bench), and **outperforms GPT-4V** on [Object HalBench](https://arxiv.org/abs/2312.00849).

- 🕹 **Real-time Multimodal Interaction.** 

  We combine the OmniLMM-12B and GPT-3.5 (text-only) into a **real-time multimodal interactive assistant**. The assistant accepts video streams from the camera and speech streams from the microphone and emits speech output. While still primary, we find the model can **replicate some of the fun cases shown in the Gemini Demo video, without any video edition**.


### Evaluation <!-- omit in toc -->
<div align="center">
    <img src=assets/radar_omnilmm12b.png width=66% />
</div>
<details>
<summary>Click to view results on MME, MMBench, MMMU, MMBench, MMHal-Bench, Object HalBench, SeedBench, LLaVA Bench, MathVista. </summary>

<table>
<thead>
  <tr>
    <th align="left">Model</th>
    <th>Size</th>
    <th>MME</th>
    <th nowrap="nowrap">MMB dev (en)</th>
    <th nowrap="nowrap" >MMMU val</th>
    <th nowrap="nowrap" >MMHal-Bench</th>
    <th nowrap="nowrap" >Object HalBench</th>
    <th nowrap="nowrap" >SeedBench-I</th>
    <th>MathVista</th>
    <th nowrap="nowrap" >LLaVA Bench</th>
  </tr>
</thead>
<tbody align="center">
  <tr>
    <td align="left">GPT-4V†</td>
    <td>-</td>
    <td>1771.5</td>
    <td>75.1 </td>
    <td>56.8</td>
    <td>3.53 / 70.8</td>
    <td>86.4 / 92.7</td>
    <td>71.6 </td>
    <td>47.8 </td>
    <td>93.1 </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left">Qwen-VL-Plus†</td>
    <td>-</td>
    <td>2183.4</td>
    <td>66.2 </td>
    <td>45.2</td>
    <td>- </td>
    <td>- </td>
    <td>65.7 </td>
    <td>36.0 </td>
    <td>73.7 </td>
  </tr>
  <tr>
    <td align="left">Yi-VL 6B</td>
    <td align="right">6.7B </td>
    <td>1915.1 </td>
    <td>68.6 </td>
    <td>40.3 </td>
    <td>- </td>
    <td>- </td>
    <td>67.5 </td>
    <td>28.8 </td>
    <td>51.9 </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left" >Qwen-VL-Chat</td>
    <td align="right">9.6B</td>
    <td>1860.0</td>
    <td>60.6 </td>
    <td>35.9</td>
    <td>2.93 / 59.4</td>
    <td>56.2 / 80.0</td>
    <td>64.8 </td>
    <td>33.8 </td>
    <td>67.7 </td>
  </tr>
  <tr>
    <td align="left" >CogVLM-Chat</td>
    <td align="right">17.4B</td>
    <td>1736.6</td>
    <td>63.7 </td>
    <td>32.1 </td>
    <td>2.68 / 52.1 </td>
    <td>73.6 / 87.4 </td>
    <td>68.8 </td>
    <td>34.7 </td>
    <td>73.9 </td>
  </tr>
  <tr>
    <td align="left" >LLaVA 1.5</td>
    <td align="right">13.6B </td>
    <td>1808.4 </td>
    <td>68.2 </td>
    <td>36.4 </td>
    <td>2.71 / 51.0 </td>
    <td>53.7 / 77.4 </td>
    <td>68.1 </td>
    <td>26.4 </td>
    <td>64.6 </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left" ><b>OmniLMM-12B</b></td>
    <td align="right">11.6B </td>
    <td>1935.8 </td>
    <td>71.6 </td>
    <td>40.7 </td>
    <td>3.45 / 68.8 </td>
    <td>90.3 / 95.5 </td>
    <td>71.1 </td>
    <td>34.9 </td>
    <td>72.0 </td>
  </tr>
</tbody>
</table>
<small>†: Proprietary models</small>
<br>
</details>

### Examples <!-- omit in toc -->

<table align="center" >
  <p align="center" > 
    <img src="assets/omnilmm-12b-examples_2.png" />
  </p>
</table>


We combine the OmniLMM-12B and GPT-3.5 (text-only) into a **real-time multimodal interactive assistant**. Video frames are described in text using OmniLMM-12B, and ChatGPT 3.5 (text-only) is employed to generate response according to the descriptions and user prompts. The demo video is a raw recording without edition. 

<div align="center" >
  <video controls src="https://github.com/OpenBMB/OmniLMM/assets/157115220/485a8f52-fb4d-4eca-8fee-506347efcfc6" type="video/mp4" width=80%/>
</div>

### Model Zoo

| Model                | Description       | Download Link |
|:----------------------|:-------------------|:---------------:|
| OmniLMM-12B | The most capable version with leading performance.   |  [🤗](https://huggingface.co/openbmb/OmniLMM-12B) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/OmniLMM-12B/files) |