File size: 22,919 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
import re
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
import copy
import pandas as pd
import os
import math
import time
from imutils.object_detection import non_max_suppression
from sklearn.mixture import GaussianMixture
from sklearn.cluster import KMeans
import xgboost as xgb
from sklearn.linear_model import LinearRegression
from sklearn.neural_network import MLPRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from scipy.stats import norm
from sklearn.neighbors import KernelDensity
from PIL import Image
from io import BytesIO
from pytesseract import pytesseract
from gensim import corpora, models, similarities
import nltk
from nltk.corpus import stopwords
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
from sentence_transformers import SentenceTransformer

General_Category = {
    'Potatoes / Vegetables / Fruit': ['Potatoes / Vegetables / Fruit'],
    'Chemical products': ['Chemical products'],
    'Photo / Film / Optical items': ['Photo / Film / Optical items'],
    'Catering industry': ['Catering industry'],
    'Industrial products other': ['Industrial products other'],
    'Media': ['Media'],
    'Real estate': ['Real estate'],
    'Government': ['Government'],
    'Personnel advertisements': ['Personnel advertisements'],
    'Cars / Commercial vehicles': ['Cars / Commercial vehicles'],
    'Cleaning products': ['Cleaning products'],
    'Retail': ['Retail'],
    'Fragrances': ['Fragrances'],
    'Footwear / Leather goods': ['Footwear / Leather goods'],
    'Software / Automation': ['Software / Automation'],
    'Telecommunication equipment': ['Telecommunication equipment'],
    'Tourism': ['Tourism'],
    'Transport/Communication companies': ['Transport/Communication companies'],
    'Transport services': ['Transport services'],
    'Insurances': ['Insurances'],
    'Meat / Fish / Poultry': ['Meat / Fish / Poultry'],
    'Detergents': ['Detergents'],
    'Foods General': ['Foods general', 'Bread / Banquet', 'Chocolate / Confectionery', 'Soup / Soup products', 'Edible fats', 'Sugar / Herbs / Spices', 'Dairy'],
    'Other services': ['Education', 'Other services'], 
    'Banks and Financial Services': ['Banks / Financing', 'Financial services other'],
    'Office Products': ['Office equipment', 'Office automation hardware', 'Office products'],
    'Household Items': ['Household items', 'Small household equipment'],
    'Non-alcoholic beverages': ['Non-alcoholic beverages', 'Coffee/Tea'],
    'Hair, Oral and Personal Care': ['Skin care', 'Hair care', 'Oral care', 'Personal care electric'],
    'Fashion and Clothing': ['Outerwear', 'Underwear / Sleepwear'],
    'Other products and Services': ['Pet foods', 'Other products and services', 'Other advertisements'],
    'Paper products': ['Paper products', 'Paper products body care'],
    'Alcohol and Other Stimulants': ['Weak alcoholic drinks', 'Strong alcoholic drinks', 'Tobacco'],
    'Medicines': ['Medicines', 'Bandages'],
    'Recreation and Leisure': ['Recreation', 'Leisure items / Hobby items'],
    'Electronics': ['Kitchen appliances', 'Brown goods (Sound and video Electronics)'],
    'Home Furnishings': ['Home furnishings', 'Home upholstery', 'Home textiles'],
    'Products for Business Use': ['Products for business use', 'Other business services']}

#Saliency Map: Itti-Koch
def Itti_Saliency(img, scale_final=4):

    r = copy.copy(img[:,:,0].astype('float64'))
    g = copy.copy(img[:,:,1].astype('float64'))
    b = copy.copy(img[:,:,2].astype('float64'))

    #Intensity
    I = (r+g+b)/3
    dim1_img, dim2_img = np.shape(I)

    #Normalization of r,g,b
    mask1 = I >= 0.1*np.max(I)
    mask2 = I < 0.1*np.max(I)
    r[mask1] = r[mask1]/I[mask1]
    r[mask2] = 0
    g[mask1] = g[mask1]/I[mask1]
    g[mask2] = 0
    b[mask1] = b[mask1]/I[mask1]
    b[mask2] = 0

    #Fine-tuned Color Channels
    R = r-(g+b)/2
    G = g-(r+b)/2
    B = b-(r+g)/2
    Y = (r+g)/2-np.abs(r-g)/2-b

    #Intensity Feature Maps
    I_pyr = [I]
    R_pyr = [R]
    G_pyr = [G]
    B_pyr = [B]
    Y_pyr = [Y]

    I_maps = []
    RG_maps = []
    BY_maps = []

    for i in range(8):
        I_pyr.append(cv.pyrDown(I_pyr[i]))
        R_pyr.append(cv.pyrDown(R_pyr[i]))
        G_pyr.append(cv.pyrDown(G_pyr[i]))
        B_pyr.append(cv.pyrDown(B_pyr[i]))
        Y_pyr.append(cv.pyrDown(Y_pyr[i]))

    for c in (2,3,4):
        for d in (3,4):
            shape = (np.shape(I_pyr[c])[1],np.shape(I_pyr[c])[0])
            temp = cv.resize(I_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)
            temp_G = cv.resize(G_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)
            temp_R = cv.resize(R_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)
            temp_B = cv.resize(B_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)
            temp_Y = cv.resize(Y_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)

            I_maps.append(np.abs(I_pyr[c]-temp))
            RG_maps.append(np.abs((R_pyr[c]-G_pyr[c])-(temp_G-temp_R)))
            BY_maps.append(np.abs((B_pyr[c]-Y_pyr[c])-(temp_Y-temp_B)))

    g_kernel = cv.getGaborKernel((5, 5), 2.0, np.pi/4, 10.0, 0.5, 0)
    O_maps = []
    for theta in (0, np.pi/4, np.pi/2, 3*np.pi/4):
        O_pyr = [I]
        for i in range(8):
            filtered = cv.filter2D(I_pyr[i], ddepth=-1, kernel=g_kernel)
            dim1,dim2 = np.shape(filtered)
            O_pyr.append(cv.resize(filtered, (dim1//2,dim2//2), interpolation=cv.INTER_LINEAR))
        for c in (2,3,4):
            for d in (3,4):
                shape = (np.shape(O_pyr[c])[1],np.shape(O_pyr[c])[0])
                temp = cv.resize(O_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)

                O_maps.append(np.abs(O_pyr[c]-temp))
                
    S = 0
    M = 10
    scaling = 2**scale_final

    for I_map in I_maps:
        temp = normalization(I_map,M)
        temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR)
        S += temp

    for i in range(len(RG_maps)):
        temp = normalization(RG_maps[i],M)+normalization(BY_maps[i],M)
        temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR)
        S += temp

    for O_map in O_maps:
        temp = normalization(O_map,M)
        temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR)
        S += temp

    S = 1/3*S
    return S
            
#Saliency map helper
def normalization(X, M):
    max_val = np.max(X)
    
    #first step
    X = X*M/max_val
    
    #second step
    mask = X < M
    m_bar = np.mean(X[mask])
    
    #third step
    return (M-m_bar)**2*X
  
#For K-Means and Saliency Features
def salience_matrix_conv(sal_mat,threshold,num_clusters,enhance_rate=2):
    norm_sal = sal_mat**enhance_rate/np.max(sal_mat**enhance_rate)
    mask = norm_sal < threshold
    norm_sal[mask] = 0
    [dim1,dim2] = np.shape(sal_mat)
    mask = norm_sal >= threshold
    vecs = []
    for i in range(dim1):
        for j in range(dim2):
            if norm_sal[i,j] == 0:
                continue
            else:
                vecs.append([i/dim1,j/dim2,norm_sal[i,j]])
    vecs = np.array(vecs)
    km = KMeans(n_clusters=num_clusters, random_state=0, n_init=10).fit(vecs)
    return (vecs, km)

def Center(X):
    ws = X[:,2].reshape(len(X[:,2]),1)
    ws = ws/np.sum(ws)
    loc = X[:,0:2]
    return np.sum(loc*ws,axis=0)

def Cov_est(X, center):
    n = X.shape[0]
    loc = X[:,0:2]
    return np.matmul((loc-center).T,(loc-center))/n

def Renyi_Entropy(P):
    n = len(P)
    Q = np.ones_like(P)/n
    return np.sum(P*np.log(P/Q))#-2*np.log(np.sum(np.sqrt(P*Q)))

def img_clusters(num_clusters, img, kmeans_labels, k_means_centers, vecs, show_cluster=False):
    clusters = []
    labels = []
    scores = []
    widths = []
    pred = kmeans_labels

    for i in range(num_clusters):
        clusters.append(np.zeros_like(img))
        labels.append(pred == i)

    for k in range(num_clusters):
        for item in vecs[labels[k]]:
            i,j,val = item
            i = int(i); j = int(j)
            clusters[k][i,j] = val
        scores.append(np.sum(clusters[k]))
        widths.append(np.linalg.det(Cov_est(vecs[labels[k]],Center(vecs[labels[k]]))))
    ind = np.argsort(-1*np.array(scores))
    scores = np.array(scores)[ind]
    widths = np.array(widths)[ind]
    perc_S = np.array(scores)/sum(scores)
    D = 1/(Renyi_Entropy(perc_S)+0.001)

    if show_cluster:
        fig,ax = plt.subplots(1,num_clusters)
        for i in range(num_clusters):
            ax[i].imshow(clusters[i])
            ax[i].axis('off')
        plt.savefig("clusters.png", bbox_inches='tight')
        plt.show()

    return (clusters,perc_S,widths,D)

def weights_pages(ad_size, num_clusters):
    if ad_size == '1g':
        return np.concatenate((np.ones(num_clusters),0.2*np.ones(num_clusters)))
    elif ad_size == '1w':
        return np.ones(2*num_clusters)
    elif ad_size == 'hw':
        return np.concatenate((0.2*np.ones(num_clusters),np.ones(num_clusters)))
    else:
        return 0.5*np.ones(2*num_clusters)

def ad_loc_indicator(ad_size):
    if ad_size == '1g':
        return 0
    elif ad_size == '1w':
        return 2
    elif ad_size == 'hw':
        return 1
    else:
        return 3

def full_weights(ad_sizes, num_clusters):
    out = []
    for ad_size in ad_sizes:
        out.append(weights_pages(ad_size,num_clusters))
    return np.array(out)

def ad_loc_indicator_full(ad_sizes):
    out = []
    for ad_size in ad_sizes:
        out.append(ad_loc_indicator(ad_size))
    return np.array(out)

def filesize_individual(img_path):
    if type(img_path) == str:
        out = os.path.getsize(img_path)/1000
    else:
        img = Image.fromarray(img_path)
        img_file = BytesIO()
        img.save(img_file, 'jpeg')
        out = img_file.tell()

    return out

def KL_dist(P,Q):
    return np.sum(P*(np.log(P)-np.log(Q)),axis=1)

def KL_score(y_pred,y_test):
    kde_pred = KernelDensity(kernel="gaussian", bandwidth=0.75).fit(y_pred.reshape(-1, 1))
    log_dens_pred = kde_pred.score_samples(y_pred.reshape(-1, 1))
    x = np.linspace(-10,10,num=100)
    kde_true = KernelDensity(kernel="gaussian", bandwidth=0.75).fit(y_test.reshape(-1, 1))
    log_dens_true = kde_true.score_samples(y_test.reshape(-1, 1))
    plt.plot(x,np.exp(kde_pred.score_samples(x.reshape(-1, 1))),label='pred')
    plt.plot(x,np.exp(kde_true.score_samples(x.reshape(-1, 1))),label='true')
    plt.legend()
    plt.show()
    return np.sum(np.exp(log_dens_pred)*(log_dens_pred-log_dens_true))

def medoid(X_in, d):
    temp = []
    temp_d = []
    for item in X_in:
        temp.append(np.sum(d(X_in-item)))
        temp_d.append(np.sum(d(X_in-item), axis=1))
    return (np.argmin(temp), temp_d[np.argmin(temp)])

def sqr_dist(x):
    return np.multiply(x,x)

def data_normalize(X_train,X_test):
    num_train = X_train.shape[0]
    m_train = np.sum(X_train,axis=0)/num_train
    s_train = np.sqrt(np.sum((X_train-m_train)**2,axis=0))
    X_train_transf = (X_train-m_train)/s_train
    X_test_transf = (X_test-m_train)/s_train
    return X_train_transf, X_test_transf

def typ_cat(medoids, X_test, category, d):
    ind_temp = np.arange(len(category))
    ind_interest = ind_temp[np.array(category)==1][0]
    typ = np.sum(d(X_test-medoids[ind_interest]), axis=1)
    return typ
  
  
#EAST Text Detection
def text_detection_east(image, text_detection_model_path):
    orig = image.copy()
    (H, W) = image.shape[:2]
    (newW, newH) = (W, H)
    rW = W / float(newW)
    rH = H / float(newH)
    # resize the image and grab the new image dimensions
    image = cv.resize(image, (newW, newH))
    (H, W) = image.shape[:2]

    # define the two output layer names for the EAST detector model that
    # we are interested -- the first is the output probabilities and the
    # second can be used to derive the bounding box coordinates of text
    layerNames = [
        "feature_fusion/Conv_7/Sigmoid",
        "feature_fusion/concat_3"]

    # load the pre-trained EAST text detector
    print("[INFO] loading EAST text detector...")
    net = cv.dnn.readNet(text_detection_model_path)
    # construct a blob from the image and then perform a forward pass of
    # the model to obtain the two output layer sets
    blob = cv.dnn.blobFromImage(image, 1.0, (W, H),
        (123.68, 116.78, 103.94), swapRB=True, crop=False)
    start = time.time()
    net.setInput(blob)
    (scores, geometry) = net.forward(layerNames)
    end = time.time()
    # show timing information on text prediction
    print("[INFO] text detection took {:.6f} seconds".format(end - start))

    # grab the number of rows and columns from the scores volume, then
    # initialize our set of bounding box rectangles and corresponding
    # confidence scores
    (numRows, numCols) = scores.shape[2:4]
    rects = []
    confidences = []
    # loop over the number of rows
    for y in range(0, numRows):
        # extract the scores (probabilities), followed by the geometrical
        # data used to derive potential bounding box coordinates that
        # surround text
        scoresData = scores[0, 0, y]
        xData0 = geometry[0, 0, y]
        xData1 = geometry[0, 1, y]
        xData2 = geometry[0, 2, y]
        xData3 = geometry[0, 3, y]
        anglesData = geometry[0, 4, y]

        # loop over the number of columns
        for x in range(0, numCols):
            # if our score does not have sufficient probability, ignore it
            if scoresData[x] < 0.5:
                continue
            # compute the offset factor as our resulting feature maps will
            # be 4x smaller than the input image
            (offsetX, offsetY) = (x * 4.0, y * 4.0)
            # extract the rotation angle for the prediction and then
            # compute the sin and cosine
            angle = anglesData[x]
            cos = np.cos(angle)
            sin = np.sin(angle)
            # use the geometry volume to derive the width and height of
            # the bounding box
            h = xData0[x] + xData2[x]
            w = xData1[x] + xData3[x]
            # compute both the starting and ending (x, y)-coordinates for
            # the text prediction bounding box
            endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x]))
            endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x]))
            startX = int(endX - w)
            startY = int(endY - h)
            # add the bounding box coordinates and probability score to
            # our respective lists
            rects.append((startX, startY, endX, endY))
            confidences.append(scoresData[x])

    # apply non-maxima suppression to suppress weak, overlapping bounding
    # boxes
    boxes = non_max_suppression(np.array(rects), probs=confidences)

    count = 0

    for (x1, y1, x2, y2) in boxes:
        count += 1

    return count
  
  #Texts and Objects
def center_crop(img, dim):
	"""Returns center cropped image
	Args:
	img: image to be center cropped
	dim: dimensions (width, height) to be cropped
	"""
	width, height = img.shape[1], img.shape[0]

	# process crop width and height for max available dimension
	crop_width = dim[0] if dim[0]<img.shape[1] else img.shape[1]
	crop_height = dim[1] if dim[1]<img.shape[0] else img.shape[0] 
	mid_x, mid_y = int(width/2), int(height/2)
	cw2, ch2 = int(crop_width/2), int(crop_height/2) 
	crop_img = img[mid_y-ch2:mid_y+ch2, mid_x-cw2:mid_x+cw2]
	return crop_img

def ad_object_detection(model, image, crop_dim=600):
    final_output = []
    results = model(np.moveaxis(center_crop(image,(crop_dim,crop_dim)),-1,0))
    results_all = model(np.moveaxis(image,-1,0))
    table = results.pandas().xyxy[0]
    table_all = results_all.pandas().xyxy[0]
    ad_objs = {}
    #      xmin    ymin    xmax   ymax  confidence  class    name
    for i, obj in enumerate(list(table['name'])):
        coords = [list(table['xmax'])[i], list(table['xmin'])[i], list(table['ymax'])[i], list(table['ymin'])[i]]
        area = (list(table['xmax'])[i] - list(table['xmin'])[i])*(list(table['ymax'])[i] - list(table['ymin'])[i])
        if obj in ad_objs:
            ad_objs[obj][0] += list(table['confidence'])[i]
            ad_objs[obj][1] += area
            ad_objs[obj][2].append(coords)
        else:
            ad_objs[obj] = [list(table['confidence'])[i], area, [coords]]
    for i, obj in enumerate(list(table_all['name'])):
        coords_all = [list(table_all['xmax'])[i], list(table_all['xmin'])[i], list(table_all['ymax'])[i], list(table_all['ymin'])[i]]
        area_all = (list(table_all['xmax'])[i] - list(table_all['xmin'])[i])*(list(table_all['ymax'])[i] - list(table_all['ymin'])[i])
        if obj in ad_objs:
            ad_objs[obj][0] += list(table_all['confidence'])[i]
            ad_objs[obj][1] += area_all
            ad_objs[obj][2].append(coords_all)
        else:
            ad_objs[obj] = [list(table_all['confidence'])[i], area_all, [coords_all]]

    count = 0
    for obj in list(ad_objs.keys()):
        count += len(ad_objs[obj][2])

    return ad_objs, count

def ad_word_classes(image, dutch_preposition, stop_words):
    ad_text_dic = {}
    text = pytesseract.image_to_string(image)
    result = re.sub(r'\W+','*',re.sub(r'\d+', '*', text.lower())).split('*')[:-1]
    for item in result:
        if item != '':
            if len(item) > 3:
                if item not in dutch_preposition and item not in stop_words:
                    if item in ad_text_dic:
                        ad_text_dic[item] += 1
                    else:
                        ad_text_dic[item] = 1
    
    return ad_text_dic

def topic_features(ad_objs, ad_text_dic, dictionary, model, num_topics=20):
    corpus = []

    #Object
    if len(ad_objs) > 0:
        for obj in list(ad_objs.keys()):
            corpus.append((dictionary[obj],len(ad_objs[obj][2])))

    #Words
    if len(ad_text_dic) > 0:
        for word in list(ad_text_dic.keys()):
            if word in dictionary:
                corpus.append((dictionary[word],ad_text_dic[word]))

    #Topic weights
    ad_topic_weights = np.zeros(num_topics)
    aux = np.ones(num_topics)
    sum = 0
    count = 0
    for i,w in model[corpus]:
        aux[i] = 0
        ad_topic_weights[i] = w
        sum += w
        count += 1
    if num_topics-count != 0:
        ad_topic_weights = ad_topic_weights+(1-sum)/(num_topics-count)*aux

    return ad_topic_weights

def object_and_topic_variables(ad_image, ctpg_image, has_ctpg, dictionary, dutch_preposition, language, model_obj, model_lda, num_topic=20):
    nltk.download('stopwords')
    stop_words = stopwords.words(language)

    #Ad
    ad_objs, ad_num_objs = ad_object_detection(model_obj, ad_image, crop_dim=600)
    ad_text_dic = ad_word_classes(ad_image, dutch_preposition, stop_words)
    ad_topic_weights = topic_features(ad_objs, ad_text_dic, dictionary, model_lda, num_topic)

    #Counterpage
    if has_ctpg:
        ctpg_objs, ctpg_num_objs = ad_object_detection(model_obj, ctpg_image, crop_dim=600)
        ctpg_text_dic = ad_word_classes(ctpg_image, dutch_preposition, stop_words)
        ctpg_topic_weights = topic_features(ctpg_objs, ctpg_text_dic, dictionary, model_lda, num_topic)
    else:
        ctpg_num_objs = 0
        ctpg_topic_weights = np.ones(num_topic)/num_topic

    #Topic Difference
    Diff = KL_dist(ad_topic_weights.reshape(1,num_topic), ctpg_topic_weights.reshape(1,num_topic))

    return ad_num_objs, ctpg_num_objs, ad_topic_weights, Diff
  
def product_category():
    global General_Category
    categories = np.array(list(General_Category.keys()))
    five_categories = []
    for i in range(len(categories)//5):
        five_categories.append(list(categories[(5*i):(5*i+5)]))
    if len(categories)%5 > 0:
        i = i+1
        five_categories.append(list(categories[(5*i):(5*i+5)]))
    
    #Create dictionary
    Name_to_Index_dict = {}
    for i in range(len(categories)):
        Name_to_Index_dict[categories[i]] = i

    #User Questions
    flag = True
    while flag:
        for i, item in enumerate(five_categories):
            print("list "+str(i+1)+" out of "+str(len(five_categories)))
            for j, cat in enumerate(item):
                print(str(j)+": "+cat)
            choice = input("Please choose the general category. If no good fit, please type N; otherwise, type the numbering: ")
            if choice == "N":
                print()
                continue
            else:
                choice = item[int(choice)]
                break
        confirm = input("If you have chosen successfully, please type Y or y; otherwise, please type any other key: ")
        if confirm == 'Y' or confirm == 'y':
            flag = False
        else:
            print('Please choose again.')

    #Output
    out = np.zeros(38)
    out[Name_to_Index_dict[choice]] = 1

    return out


def Region_Selection(img):
    As = []
    while True:
        _, _, w, h = cv.selectROI("Select ROI", img, fromCenter=False, showCrosshair=False)
        As.append(w*h)
        ans = input("Continue? (y/n) ")
        if ans == 'n':
            break
    A = sum(As)
    return A

def RMSRPD(y_pred, y_true):
    diff = y_pred - y_true
    den = 0.5*(np.abs(y_pred) + np.abs(y_true))
    return np.sqrt(np.mean((diff/den)**2))

def Caption_Generation(image): #image is a PIL Image object
    with torch.no_grad():
        image = image.convert('RGB')
        model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True, torch_dtype=torch.float16)
        model = model.to(device='cpu', dtype=torch.float32).eval()

        # model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, torch_dtype=torch.float16)
        # model = model.to(device=torch.device("mps"), dtype=torch.float16)
        
        tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True) #'openbmb/MiniCPM-Llama3-V-2_5'
        # tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True) #'openbmb/MiniCPM-Llama3-V-2_5'


        question = 'Describe the image in a paragraph. Please include details.'
        msgs = [{'role': 'user', 'content': question}]

        # curr = []

        res = model.chat(
            image=image,
            context=None,
            msgs=msgs,
            tokenizer=tokenizer,
            sampling=True, # if sampling=False, beam_search will be used by default
            temperature=0.7,
            # system_prompt='' # pass system_prompt if needed
        )

    return res[0]

def Topic_emb(caption):
    with torch.no_grad():
        model = SentenceTransformer("Magazine_Topic_Embedding_sample_size15").eval()
        embeddings = model.encode(caption).reshape(1,768)
    return embeddings