Spaces:
Running
Running
File size: 22,919 Bytes
569f484 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
import re
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
import copy
import pandas as pd
import os
import math
import time
from imutils.object_detection import non_max_suppression
from sklearn.mixture import GaussianMixture
from sklearn.cluster import KMeans
import xgboost as xgb
from sklearn.linear_model import LinearRegression
from sklearn.neural_network import MLPRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from scipy.stats import norm
from sklearn.neighbors import KernelDensity
from PIL import Image
from io import BytesIO
from pytesseract import pytesseract
from gensim import corpora, models, similarities
import nltk
from nltk.corpus import stopwords
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
from sentence_transformers import SentenceTransformer
General_Category = {
'Potatoes / Vegetables / Fruit': ['Potatoes / Vegetables / Fruit'],
'Chemical products': ['Chemical products'],
'Photo / Film / Optical items': ['Photo / Film / Optical items'],
'Catering industry': ['Catering industry'],
'Industrial products other': ['Industrial products other'],
'Media': ['Media'],
'Real estate': ['Real estate'],
'Government': ['Government'],
'Personnel advertisements': ['Personnel advertisements'],
'Cars / Commercial vehicles': ['Cars / Commercial vehicles'],
'Cleaning products': ['Cleaning products'],
'Retail': ['Retail'],
'Fragrances': ['Fragrances'],
'Footwear / Leather goods': ['Footwear / Leather goods'],
'Software / Automation': ['Software / Automation'],
'Telecommunication equipment': ['Telecommunication equipment'],
'Tourism': ['Tourism'],
'Transport/Communication companies': ['Transport/Communication companies'],
'Transport services': ['Transport services'],
'Insurances': ['Insurances'],
'Meat / Fish / Poultry': ['Meat / Fish / Poultry'],
'Detergents': ['Detergents'],
'Foods General': ['Foods general', 'Bread / Banquet', 'Chocolate / Confectionery', 'Soup / Soup products', 'Edible fats', 'Sugar / Herbs / Spices', 'Dairy'],
'Other services': ['Education', 'Other services'],
'Banks and Financial Services': ['Banks / Financing', 'Financial services other'],
'Office Products': ['Office equipment', 'Office automation hardware', 'Office products'],
'Household Items': ['Household items', 'Small household equipment'],
'Non-alcoholic beverages': ['Non-alcoholic beverages', 'Coffee/Tea'],
'Hair, Oral and Personal Care': ['Skin care', 'Hair care', 'Oral care', 'Personal care electric'],
'Fashion and Clothing': ['Outerwear', 'Underwear / Sleepwear'],
'Other products and Services': ['Pet foods', 'Other products and services', 'Other advertisements'],
'Paper products': ['Paper products', 'Paper products body care'],
'Alcohol and Other Stimulants': ['Weak alcoholic drinks', 'Strong alcoholic drinks', 'Tobacco'],
'Medicines': ['Medicines', 'Bandages'],
'Recreation and Leisure': ['Recreation', 'Leisure items / Hobby items'],
'Electronics': ['Kitchen appliances', 'Brown goods (Sound and video Electronics)'],
'Home Furnishings': ['Home furnishings', 'Home upholstery', 'Home textiles'],
'Products for Business Use': ['Products for business use', 'Other business services']}
#Saliency Map: Itti-Koch
def Itti_Saliency(img, scale_final=4):
r = copy.copy(img[:,:,0].astype('float64'))
g = copy.copy(img[:,:,1].astype('float64'))
b = copy.copy(img[:,:,2].astype('float64'))
#Intensity
I = (r+g+b)/3
dim1_img, dim2_img = np.shape(I)
#Normalization of r,g,b
mask1 = I >= 0.1*np.max(I)
mask2 = I < 0.1*np.max(I)
r[mask1] = r[mask1]/I[mask1]
r[mask2] = 0
g[mask1] = g[mask1]/I[mask1]
g[mask2] = 0
b[mask1] = b[mask1]/I[mask1]
b[mask2] = 0
#Fine-tuned Color Channels
R = r-(g+b)/2
G = g-(r+b)/2
B = b-(r+g)/2
Y = (r+g)/2-np.abs(r-g)/2-b
#Intensity Feature Maps
I_pyr = [I]
R_pyr = [R]
G_pyr = [G]
B_pyr = [B]
Y_pyr = [Y]
I_maps = []
RG_maps = []
BY_maps = []
for i in range(8):
I_pyr.append(cv.pyrDown(I_pyr[i]))
R_pyr.append(cv.pyrDown(R_pyr[i]))
G_pyr.append(cv.pyrDown(G_pyr[i]))
B_pyr.append(cv.pyrDown(B_pyr[i]))
Y_pyr.append(cv.pyrDown(Y_pyr[i]))
for c in (2,3,4):
for d in (3,4):
shape = (np.shape(I_pyr[c])[1],np.shape(I_pyr[c])[0])
temp = cv.resize(I_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)
temp_G = cv.resize(G_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)
temp_R = cv.resize(R_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)
temp_B = cv.resize(B_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)
temp_Y = cv.resize(Y_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)
I_maps.append(np.abs(I_pyr[c]-temp))
RG_maps.append(np.abs((R_pyr[c]-G_pyr[c])-(temp_G-temp_R)))
BY_maps.append(np.abs((B_pyr[c]-Y_pyr[c])-(temp_Y-temp_B)))
g_kernel = cv.getGaborKernel((5, 5), 2.0, np.pi/4, 10.0, 0.5, 0)
O_maps = []
for theta in (0, np.pi/4, np.pi/2, 3*np.pi/4):
O_pyr = [I]
for i in range(8):
filtered = cv.filter2D(I_pyr[i], ddepth=-1, kernel=g_kernel)
dim1,dim2 = np.shape(filtered)
O_pyr.append(cv.resize(filtered, (dim1//2,dim2//2), interpolation=cv.INTER_LINEAR))
for c in (2,3,4):
for d in (3,4):
shape = (np.shape(O_pyr[c])[1],np.shape(O_pyr[c])[0])
temp = cv.resize(O_pyr[c+d], shape, interpolation=cv.INTER_LINEAR)
O_maps.append(np.abs(O_pyr[c]-temp))
S = 0
M = 10
scaling = 2**scale_final
for I_map in I_maps:
temp = normalization(I_map,M)
temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR)
S += temp
for i in range(len(RG_maps)):
temp = normalization(RG_maps[i],M)+normalization(BY_maps[i],M)
temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR)
S += temp
for O_map in O_maps:
temp = normalization(O_map,M)
temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR)
S += temp
S = 1/3*S
return S
#Saliency map helper
def normalization(X, M):
max_val = np.max(X)
#first step
X = X*M/max_val
#second step
mask = X < M
m_bar = np.mean(X[mask])
#third step
return (M-m_bar)**2*X
#For K-Means and Saliency Features
def salience_matrix_conv(sal_mat,threshold,num_clusters,enhance_rate=2):
norm_sal = sal_mat**enhance_rate/np.max(sal_mat**enhance_rate)
mask = norm_sal < threshold
norm_sal[mask] = 0
[dim1,dim2] = np.shape(sal_mat)
mask = norm_sal >= threshold
vecs = []
for i in range(dim1):
for j in range(dim2):
if norm_sal[i,j] == 0:
continue
else:
vecs.append([i/dim1,j/dim2,norm_sal[i,j]])
vecs = np.array(vecs)
km = KMeans(n_clusters=num_clusters, random_state=0, n_init=10).fit(vecs)
return (vecs, km)
def Center(X):
ws = X[:,2].reshape(len(X[:,2]),1)
ws = ws/np.sum(ws)
loc = X[:,0:2]
return np.sum(loc*ws,axis=0)
def Cov_est(X, center):
n = X.shape[0]
loc = X[:,0:2]
return np.matmul((loc-center).T,(loc-center))/n
def Renyi_Entropy(P):
n = len(P)
Q = np.ones_like(P)/n
return np.sum(P*np.log(P/Q))#-2*np.log(np.sum(np.sqrt(P*Q)))
def img_clusters(num_clusters, img, kmeans_labels, k_means_centers, vecs, show_cluster=False):
clusters = []
labels = []
scores = []
widths = []
pred = kmeans_labels
for i in range(num_clusters):
clusters.append(np.zeros_like(img))
labels.append(pred == i)
for k in range(num_clusters):
for item in vecs[labels[k]]:
i,j,val = item
i = int(i); j = int(j)
clusters[k][i,j] = val
scores.append(np.sum(clusters[k]))
widths.append(np.linalg.det(Cov_est(vecs[labels[k]],Center(vecs[labels[k]]))))
ind = np.argsort(-1*np.array(scores))
scores = np.array(scores)[ind]
widths = np.array(widths)[ind]
perc_S = np.array(scores)/sum(scores)
D = 1/(Renyi_Entropy(perc_S)+0.001)
if show_cluster:
fig,ax = plt.subplots(1,num_clusters)
for i in range(num_clusters):
ax[i].imshow(clusters[i])
ax[i].axis('off')
plt.savefig("clusters.png", bbox_inches='tight')
plt.show()
return (clusters,perc_S,widths,D)
def weights_pages(ad_size, num_clusters):
if ad_size == '1g':
return np.concatenate((np.ones(num_clusters),0.2*np.ones(num_clusters)))
elif ad_size == '1w':
return np.ones(2*num_clusters)
elif ad_size == 'hw':
return np.concatenate((0.2*np.ones(num_clusters),np.ones(num_clusters)))
else:
return 0.5*np.ones(2*num_clusters)
def ad_loc_indicator(ad_size):
if ad_size == '1g':
return 0
elif ad_size == '1w':
return 2
elif ad_size == 'hw':
return 1
else:
return 3
def full_weights(ad_sizes, num_clusters):
out = []
for ad_size in ad_sizes:
out.append(weights_pages(ad_size,num_clusters))
return np.array(out)
def ad_loc_indicator_full(ad_sizes):
out = []
for ad_size in ad_sizes:
out.append(ad_loc_indicator(ad_size))
return np.array(out)
def filesize_individual(img_path):
if type(img_path) == str:
out = os.path.getsize(img_path)/1000
else:
img = Image.fromarray(img_path)
img_file = BytesIO()
img.save(img_file, 'jpeg')
out = img_file.tell()
return out
def KL_dist(P,Q):
return np.sum(P*(np.log(P)-np.log(Q)),axis=1)
def KL_score(y_pred,y_test):
kde_pred = KernelDensity(kernel="gaussian", bandwidth=0.75).fit(y_pred.reshape(-1, 1))
log_dens_pred = kde_pred.score_samples(y_pred.reshape(-1, 1))
x = np.linspace(-10,10,num=100)
kde_true = KernelDensity(kernel="gaussian", bandwidth=0.75).fit(y_test.reshape(-1, 1))
log_dens_true = kde_true.score_samples(y_test.reshape(-1, 1))
plt.plot(x,np.exp(kde_pred.score_samples(x.reshape(-1, 1))),label='pred')
plt.plot(x,np.exp(kde_true.score_samples(x.reshape(-1, 1))),label='true')
plt.legend()
plt.show()
return np.sum(np.exp(log_dens_pred)*(log_dens_pred-log_dens_true))
def medoid(X_in, d):
temp = []
temp_d = []
for item in X_in:
temp.append(np.sum(d(X_in-item)))
temp_d.append(np.sum(d(X_in-item), axis=1))
return (np.argmin(temp), temp_d[np.argmin(temp)])
def sqr_dist(x):
return np.multiply(x,x)
def data_normalize(X_train,X_test):
num_train = X_train.shape[0]
m_train = np.sum(X_train,axis=0)/num_train
s_train = np.sqrt(np.sum((X_train-m_train)**2,axis=0))
X_train_transf = (X_train-m_train)/s_train
X_test_transf = (X_test-m_train)/s_train
return X_train_transf, X_test_transf
def typ_cat(medoids, X_test, category, d):
ind_temp = np.arange(len(category))
ind_interest = ind_temp[np.array(category)==1][0]
typ = np.sum(d(X_test-medoids[ind_interest]), axis=1)
return typ
#EAST Text Detection
def text_detection_east(image, text_detection_model_path):
orig = image.copy()
(H, W) = image.shape[:2]
(newW, newH) = (W, H)
rW = W / float(newW)
rH = H / float(newH)
# resize the image and grab the new image dimensions
image = cv.resize(image, (newW, newH))
(H, W) = image.shape[:2]
# define the two output layer names for the EAST detector model that
# we are interested -- the first is the output probabilities and the
# second can be used to derive the bounding box coordinates of text
layerNames = [
"feature_fusion/Conv_7/Sigmoid",
"feature_fusion/concat_3"]
# load the pre-trained EAST text detector
print("[INFO] loading EAST text detector...")
net = cv.dnn.readNet(text_detection_model_path)
# construct a blob from the image and then perform a forward pass of
# the model to obtain the two output layer sets
blob = cv.dnn.blobFromImage(image, 1.0, (W, H),
(123.68, 116.78, 103.94), swapRB=True, crop=False)
start = time.time()
net.setInput(blob)
(scores, geometry) = net.forward(layerNames)
end = time.time()
# show timing information on text prediction
print("[INFO] text detection took {:.6f} seconds".format(end - start))
# grab the number of rows and columns from the scores volume, then
# initialize our set of bounding box rectangles and corresponding
# confidence scores
(numRows, numCols) = scores.shape[2:4]
rects = []
confidences = []
# loop over the number of rows
for y in range(0, numRows):
# extract the scores (probabilities), followed by the geometrical
# data used to derive potential bounding box coordinates that
# surround text
scoresData = scores[0, 0, y]
xData0 = geometry[0, 0, y]
xData1 = geometry[0, 1, y]
xData2 = geometry[0, 2, y]
xData3 = geometry[0, 3, y]
anglesData = geometry[0, 4, y]
# loop over the number of columns
for x in range(0, numCols):
# if our score does not have sufficient probability, ignore it
if scoresData[x] < 0.5:
continue
# compute the offset factor as our resulting feature maps will
# be 4x smaller than the input image
(offsetX, offsetY) = (x * 4.0, y * 4.0)
# extract the rotation angle for the prediction and then
# compute the sin and cosine
angle = anglesData[x]
cos = np.cos(angle)
sin = np.sin(angle)
# use the geometry volume to derive the width and height of
# the bounding box
h = xData0[x] + xData2[x]
w = xData1[x] + xData3[x]
# compute both the starting and ending (x, y)-coordinates for
# the text prediction bounding box
endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x]))
endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x]))
startX = int(endX - w)
startY = int(endY - h)
# add the bounding box coordinates and probability score to
# our respective lists
rects.append((startX, startY, endX, endY))
confidences.append(scoresData[x])
# apply non-maxima suppression to suppress weak, overlapping bounding
# boxes
boxes = non_max_suppression(np.array(rects), probs=confidences)
count = 0
for (x1, y1, x2, y2) in boxes:
count += 1
return count
#Texts and Objects
def center_crop(img, dim):
"""Returns center cropped image
Args:
img: image to be center cropped
dim: dimensions (width, height) to be cropped
"""
width, height = img.shape[1], img.shape[0]
# process crop width and height for max available dimension
crop_width = dim[0] if dim[0]<img.shape[1] else img.shape[1]
crop_height = dim[1] if dim[1]<img.shape[0] else img.shape[0]
mid_x, mid_y = int(width/2), int(height/2)
cw2, ch2 = int(crop_width/2), int(crop_height/2)
crop_img = img[mid_y-ch2:mid_y+ch2, mid_x-cw2:mid_x+cw2]
return crop_img
def ad_object_detection(model, image, crop_dim=600):
final_output = []
results = model(np.moveaxis(center_crop(image,(crop_dim,crop_dim)),-1,0))
results_all = model(np.moveaxis(image,-1,0))
table = results.pandas().xyxy[0]
table_all = results_all.pandas().xyxy[0]
ad_objs = {}
# xmin ymin xmax ymax confidence class name
for i, obj in enumerate(list(table['name'])):
coords = [list(table['xmax'])[i], list(table['xmin'])[i], list(table['ymax'])[i], list(table['ymin'])[i]]
area = (list(table['xmax'])[i] - list(table['xmin'])[i])*(list(table['ymax'])[i] - list(table['ymin'])[i])
if obj in ad_objs:
ad_objs[obj][0] += list(table['confidence'])[i]
ad_objs[obj][1] += area
ad_objs[obj][2].append(coords)
else:
ad_objs[obj] = [list(table['confidence'])[i], area, [coords]]
for i, obj in enumerate(list(table_all['name'])):
coords_all = [list(table_all['xmax'])[i], list(table_all['xmin'])[i], list(table_all['ymax'])[i], list(table_all['ymin'])[i]]
area_all = (list(table_all['xmax'])[i] - list(table_all['xmin'])[i])*(list(table_all['ymax'])[i] - list(table_all['ymin'])[i])
if obj in ad_objs:
ad_objs[obj][0] += list(table_all['confidence'])[i]
ad_objs[obj][1] += area_all
ad_objs[obj][2].append(coords_all)
else:
ad_objs[obj] = [list(table_all['confidence'])[i], area_all, [coords_all]]
count = 0
for obj in list(ad_objs.keys()):
count += len(ad_objs[obj][2])
return ad_objs, count
def ad_word_classes(image, dutch_preposition, stop_words):
ad_text_dic = {}
text = pytesseract.image_to_string(image)
result = re.sub(r'\W+','*',re.sub(r'\d+', '*', text.lower())).split('*')[:-1]
for item in result:
if item != '':
if len(item) > 3:
if item not in dutch_preposition and item not in stop_words:
if item in ad_text_dic:
ad_text_dic[item] += 1
else:
ad_text_dic[item] = 1
return ad_text_dic
def topic_features(ad_objs, ad_text_dic, dictionary, model, num_topics=20):
corpus = []
#Object
if len(ad_objs) > 0:
for obj in list(ad_objs.keys()):
corpus.append((dictionary[obj],len(ad_objs[obj][2])))
#Words
if len(ad_text_dic) > 0:
for word in list(ad_text_dic.keys()):
if word in dictionary:
corpus.append((dictionary[word],ad_text_dic[word]))
#Topic weights
ad_topic_weights = np.zeros(num_topics)
aux = np.ones(num_topics)
sum = 0
count = 0
for i,w in model[corpus]:
aux[i] = 0
ad_topic_weights[i] = w
sum += w
count += 1
if num_topics-count != 0:
ad_topic_weights = ad_topic_weights+(1-sum)/(num_topics-count)*aux
return ad_topic_weights
def object_and_topic_variables(ad_image, ctpg_image, has_ctpg, dictionary, dutch_preposition, language, model_obj, model_lda, num_topic=20):
nltk.download('stopwords')
stop_words = stopwords.words(language)
#Ad
ad_objs, ad_num_objs = ad_object_detection(model_obj, ad_image, crop_dim=600)
ad_text_dic = ad_word_classes(ad_image, dutch_preposition, stop_words)
ad_topic_weights = topic_features(ad_objs, ad_text_dic, dictionary, model_lda, num_topic)
#Counterpage
if has_ctpg:
ctpg_objs, ctpg_num_objs = ad_object_detection(model_obj, ctpg_image, crop_dim=600)
ctpg_text_dic = ad_word_classes(ctpg_image, dutch_preposition, stop_words)
ctpg_topic_weights = topic_features(ctpg_objs, ctpg_text_dic, dictionary, model_lda, num_topic)
else:
ctpg_num_objs = 0
ctpg_topic_weights = np.ones(num_topic)/num_topic
#Topic Difference
Diff = KL_dist(ad_topic_weights.reshape(1,num_topic), ctpg_topic_weights.reshape(1,num_topic))
return ad_num_objs, ctpg_num_objs, ad_topic_weights, Diff
def product_category():
global General_Category
categories = np.array(list(General_Category.keys()))
five_categories = []
for i in range(len(categories)//5):
five_categories.append(list(categories[(5*i):(5*i+5)]))
if len(categories)%5 > 0:
i = i+1
five_categories.append(list(categories[(5*i):(5*i+5)]))
#Create dictionary
Name_to_Index_dict = {}
for i in range(len(categories)):
Name_to_Index_dict[categories[i]] = i
#User Questions
flag = True
while flag:
for i, item in enumerate(five_categories):
print("list "+str(i+1)+" out of "+str(len(five_categories)))
for j, cat in enumerate(item):
print(str(j)+": "+cat)
choice = input("Please choose the general category. If no good fit, please type N; otherwise, type the numbering: ")
if choice == "N":
print()
continue
else:
choice = item[int(choice)]
break
confirm = input("If you have chosen successfully, please type Y or y; otherwise, please type any other key: ")
if confirm == 'Y' or confirm == 'y':
flag = False
else:
print('Please choose again.')
#Output
out = np.zeros(38)
out[Name_to_Index_dict[choice]] = 1
return out
def Region_Selection(img):
As = []
while True:
_, _, w, h = cv.selectROI("Select ROI", img, fromCenter=False, showCrosshair=False)
As.append(w*h)
ans = input("Continue? (y/n) ")
if ans == 'n':
break
A = sum(As)
return A
def RMSRPD(y_pred, y_true):
diff = y_pred - y_true
den = 0.5*(np.abs(y_pred) + np.abs(y_true))
return np.sqrt(np.mean((diff/den)**2))
def Caption_Generation(image): #image is a PIL Image object
with torch.no_grad():
image = image.convert('RGB')
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True, torch_dtype=torch.float16)
model = model.to(device='cpu', dtype=torch.float32).eval()
# model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, torch_dtype=torch.float16)
# model = model.to(device=torch.device("mps"), dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True) #'openbmb/MiniCPM-Llama3-V-2_5'
# tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True) #'openbmb/MiniCPM-Llama3-V-2_5'
question = 'Describe the image in a paragraph. Please include details.'
msgs = [{'role': 'user', 'content': question}]
# curr = []
res = model.chat(
image=image,
context=None,
msgs=msgs,
tokenizer=tokenizer,
sampling=True, # if sampling=False, beam_search will be used by default
temperature=0.7,
# system_prompt='' # pass system_prompt if needed
)
return res[0]
def Topic_emb(caption):
with torch.no_grad():
model = SentenceTransformer("Magazine_Topic_Embedding_sample_size15").eval()
embeddings = model.encode(caption).reshape(1,768)
return embeddings |