File size: 7,363 Bytes
569f484
 
 
 
 
 
b4b7ecd
 
569f484
 
 
 
b4b7ecd
 
569f484
 
39ae7e7
 
 
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4b7ecd
 
569f484
39ae7e7
 
 
 
 
 
569f484
 
39ae7e7
569f484
39ae7e7
569f484
 
39ae7e7
569f484
 
39ae7e7
 
 
 
569f484
 
 
 
 
 
 
 
 
 
 
39ae7e7
569f484
 
39ae7e7
 
 
 
b4b7ecd
39ae7e7
 
 
 
b4b7ecd
39ae7e7
569f484
b4b7ecd
 
 
 
569f484
 
 
 
 
 
 
b4b7ecd
569f484
 
 
 
 
 
39ae7e7
 
 
 
b4b7ecd
 
 
39ae7e7
 
 
569f484
 
 
 
b4b7ecd
 
569f484
b4b7ecd
 
39ae7e7
 
 
 
569f484
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
from gradio_image_prompter import ImagePrompter
import Predict
import XGBoost_utils
import numpy as np
import cv2 as cv
import torch
from PIL import Image

GENERAL_CATEGORY = {'Potatoes / Vegetables / Fruit': 0, 'Chemical products': 1, 'Photo / Film / Optical items': 2, 'Catering industry': 3, 'Industrial products other': 4, 'Media': 5, 'Real estate': 6, 'Government': 7, 'Personnel advertisements': 8, 'Cars / Commercial vehicles': 9, 'Cleaning products': 10, 'Retail': 11, 'Fragrances': 12, 'Footwear / Leather goods': 13, 'Software / Automation': 14, 'Telecommunication equipment': 15, 'Tourism': 16, 'Transport/Communication companies': 17, 'Transport services': 18, 'Insurances': 19, 'Meat / Fish / Poultry': 20, 'Detergents': 21, 'Foods General': 22, 'Other services': 23, 'Banks and Financial Services': 24, 'Office Products': 25, 'Household Items': 26, 'Non-alcoholic beverages': 27, 'Hair, Oral and Personal Care': 28, 'Fashion and Clothing': 29, 'Other products and Services': 30, 'Paper products': 31, 'Alcohol and Other Stimulants': 32, 'Medicines': 33, 'Recreation and Leisure': 34, 'Electronics': 35, 'Home Furnishings': 36, 'Products for Business Use': 37}
CATEGORIES = list(GENERAL_CATEGORY.keys())
CATEGORIES.sort()
LOCATIONS = ['Left', 'Right', 'Full']
GAZE_TYPE = ['Ad', 'Brand']

def calculate_areas(prompts, brand_num, pictorial_num, text_num):
    image_entire = prompts["image"]
    w, h = image_entire.size
    image_entire = np.array(image_entire.convert('RGB'))
    points_all = prompts["points"]
    brand_surf = 0
    for i in range(brand_num):
        x1 = points_all[i][0]; y1 = points_all[i][1]
        x2 = points_all[i][3]; y2 = points_all[i][4]
        brand_surf += np.abs((x1-x2)*(y1-y2))

    pictorial_surf = 0
    for i in range(brand_num, brand_num+pictorial_num):
        x1 = points_all[i][0]; y1 = points_all[i][1]
        x2 = points_all[i][3]; y2 = points_all[i][4]
        pictorial_surf += np.abs((x1-x2)*(y1-y2))
    
    text_surf = 0
    for i in range(brand_num+pictorial_num, brand_num+pictorial_num+text_num):
        x1 = points_all[i][0]; y1 = points_all[i][1]
        x2 = points_all[i][3]; y2 = points_all[i][4]
        text_surf += np.abs((x1-x2)*(y1-y2))

    ad_size = 0
    x1 = points_all[-1][0]; y1 = points_all[-1][1]
    x2 = points_all[-1][3]; y2 = points_all[-1][4]
    ad_size += np.abs((x1-x2)*(y1-y2))
    ad_image = image_entire[int(y1):int(y2), int(x1):int(x2), :]
    left_margin = x1; right_margin = w-x2
    if left_margin >= right_margin:
        context_image = image_entire[:, :int(x1), :]
    else:
        context_image = image_entire[:, int(x2):, :]

    whole_size = 0
    whole_size += w*h

    return (brand_surf/whole_size*100, pictorial_surf/whole_size*100, text_surf/whole_size*100, ad_size/whole_size*100, ad_image, context_image)


def attention(notes, whole_display_prompt, 
              brand_num, pictorial_num, text_num,
              category, ad_location, gaze_type):
    text_detection_model_path = '../XGBoost_Prediction_Model/EAST-Text-Detection/frozen_east_text_detection.pb'
    LDA_model_pth = '../XGBoost_Prediction_Model/LDA_Model_trained/lda_model_best_tot.model'
    training_ad_text_dictionary_path = '../XGBoost_Prediction_Model/LDA_Model_trained/object_word_dictionary'
    training_lang_preposition_path = '../XGBoost_Prediction_Model/LDA_Model_trained/dutch_preposition'

    prod_group = np.zeros(38)
    prod_group[GENERAL_CATEGORY[category]] = 1

    if ad_location == 'left':
        ad_loc = 0
    elif ad_location == 'right':
        ad_loc = 1
    else:
        ad_loc = None

    brand_percent, visual_percent, text_percent, adv_size_percent, ad_image, context_image = calculate_areas(whole_display_prompt, brand_num, pictorial_num, text_num)
    surfaces = [brand_percent, visual_percent, text_percent, adv_size_percent*10/100]

    # caption_ad = XGBoost_utils.Caption_Generation(Image.fromarray(np.uint8(ad_image)))
    # caption_context = XGBoost_utils.Caption_Generation(Image.fromarray(np.uint8(context_image)))
    # ad_topic = XGBoost_utils.Topic_emb(caption_ad)
    # ctpg_topic = XGBoost_utils.Topic_emb(caption_context)
    np.random.seed(42)
    ad_topic = np.random.randn(1,768)
    ctpg_topic = np.random.randn(1,768)

    ad = cv.resize(ad_image, (640, 832))
    print('ad shape: ', ad.shape)
    context = cv.resize(context_image, (640, 832))

    adv_imgs = torch.permute(torch.tensor(ad), (2,0,1)).unsqueeze(0)
    ctpg_imgs = torch.permute(torch.tensor(context), (2,0,1)).unsqueeze(0)
    ad_locations = torch.tensor([1,0]).unsqueeze(0)
    heatmap = Predict.HeatMap_CNN(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG')

    Gaze = Predict.Ad_Gaze_Prediction(input_ad_path=ad, input_ctpg_path=context, ad_location=ad_loc,
                                    text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth, 
                                    training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path, training_language='dutch', 
                                    ad_embeddings=ad_topic, ctpg_embeddings=ctpg_topic,
                                    surface_sizes=surfaces, Product_Group=prod_group,
                                    obj_detection_model_pth=None, num_topic=20, Gaze_Time_Type=gaze_type)
    return np.round(Gaze,2), Image.fromarray(np.flip(heatmap, axis=2))

def greet(name, intensity):
    return "Hello " * intensity + name + "!"

demo = gr.Interface(
    fn=attention,
    inputs=[gr.Markdown("""
                        Instruction: 
                        1. Click to upload or drag the entire image that contains BOTH ad and its context;  
                        2. Draw bounding boxes in the order of:  
                           (a) Brand element(s) (skip if N.A.)  
                           (b) Pictorial element(s) (skip if N.A.)  
                           (c) Text element(s) (skip if N.A.)  
                           (d) The advertisement.  
                        NOTE: Each ad element can have more than 1 boxes."""),
            ImagePrompter(label="Upload Entire (Ad+Context) Image, and Draw Bounding Boxes", sources=['upload'], type="pil"),
            gr.Number(label="Number of brand bounding boxes drawn"),
            gr.Number(label="Number of pictorial bounding boxes drawn"),
            gr.Number(label="Number of text bounding boxes drawn"),
            gr.Dropdown(CATEGORIES, label="Product Category"),
            gr.Dropdown(LOCATIONS, label='Ad Location'),
            gr.Dropdown(GAZE_TYPE, label='Gaze Type')
            ],
    outputs=[gr.Number(label="Predicted Gaze (sec)"), 
             gr.Image(label="Heatmap by ResNet50 (Hotter/Redder regions show more contribution)")],
    title="Ad Gaze Prediction",
    description="""This app accompanies: "Contextual Advertising with Theory-Informed Machine Learning", manuscript submitted to the Journal of Marketing.  
                   App Version: 1.0, Date: 10/24/2024.  
                   Warning: Due to computational efficiency, current version has not activated LLM generated ad topics. In future version, LLM topics will be activated in GPU environment.""",
    theme=gr.themes.Soft()
)

demo.launch(share=True)