File size: 10,608 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

import torch
import torch.nn as nn
import deepspeed
from transformers import Trainer
from transformers.trainer_pt_utils import nested_detach
from transformers.utils import is_sagemaker_mp_enabled
from transformers.trainer import *
from transformers.integrations import is_deepspeed_zero3_enabled


class CPMTrainer(Trainer):
    def compute_loss(self, model, inputs, return_outputs=False):
        if "labels" in inputs:
            labels = inputs.pop("labels")
        else:
            labels = None
        
        if not self.args.use_lora:
            outputs = self.model(data = inputs, use_cache=False)
        else:
            with self.model._enable_peft_forward_hooks(**inputs):
                outputs = self.model.base_model(data = inputs, use_cache=False)
                
        if labels is not None:
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            logits = outputs.logits.view(-1,
                                         self.model.config.vocab_size).contiguous()
            labels = labels.view(-1).long().contiguous()
            # Enable model parallelism
            labels = labels.to(logits.device)
            loss = loss_fct(logits, labels)
        else:
            if isinstance(outputs, dict) and "loss" not in outputs:
                raise ValueError(
                    "The model did not return a loss from the inputs, only the following keys: "
                    f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
                )
            # We don't use .loss here since the model may return tuples instead of ModelOutput.
            loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]

        return (loss, outputs) if return_outputs else loss

    def prediction_step(
        self,
        model: nn.Module,
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
    ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
        """
        Perform an evaluation step on `model` using `inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (`nn.Module`):
                The model to evaluate.
            inputs (`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument `labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (`bool`):
                Whether or not to return the loss only.
            ignore_keys (`List[str]`, *optional*):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.

        Return:
            Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss,
            logits and labels (each being optional).
        """
        has_labels = (
            False
            if len(self.label_names) == 0
            else all(inputs.get(k) is not None for k in self.label_names)
        )
        # For CLIP-like models capable of returning loss values.
        # If `return_loss` is not specified or being `None` in `inputs`, we check if the default value of `return_loss`
        # is `True` in `model.forward`.
        return_loss = inputs.get("return_loss", None)
        if return_loss is None:
            return_loss = self.can_return_loss
        loss_without_labels = (
            True if len(self.label_names) == 0 and return_loss else False
        )

        inputs = self._prepare_inputs(inputs)
        if ignore_keys is None:
            if hasattr(self.model, "config"):
                ignore_keys = getattr(
                    self.model.config, "keys_to_ignore_at_inference", []
                )
            else:
                ignore_keys = []

        # labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
        if has_labels or loss_without_labels:
            labels = nested_detach(tuple(inputs.get(name)
                                   for name in self.label_names))
            if len(labels) == 1:
                labels = labels[0]
        else:
            labels = None

        with torch.no_grad():
            if is_sagemaker_mp_enabled():
                raw_outputs = smp_forward_only(model, inputs)
                if has_labels or loss_without_labels:
                    if isinstance(raw_outputs, dict):
                        loss_mb = raw_outputs["loss"]
                        logits_mb = tuple(
                            v
                            for k, v in raw_outputs.items()
                            if k not in ignore_keys + ["loss"]
                        )
                    else:
                        loss_mb = raw_outputs[0]
                        logits_mb = raw_outputs[1:]

                    loss = loss_mb.reduce_mean().detach().cpu()
                    logits = smp_nested_concat(logits_mb)
                else:
                    loss = None
                    if isinstance(raw_outputs, dict):
                        logits_mb = tuple(
                            v for k, v in raw_outputs.items() if k not in ignore_keys
                        )
                    else:
                        logits_mb = raw_outputs
                    logits = smp_nested_concat(logits_mb)
            else:
                if has_labels or loss_without_labels:
                    with self.compute_loss_context_manager():
                        loss, outputs = self.compute_loss(
                            model, inputs, return_outputs=True
                        )
                    loss = loss.mean().detach()

                    if isinstance(outputs, dict):
                        logits = tuple(
                            v
                            for k, v in outputs.items()
                            if k not in ignore_keys + ["loss"]
                        )
                    else:
                        logits = outputs[1:]
                else:
                    loss = None
                    with self.compute_loss_context_manager():
                        outputs = model(**inputs)
                    if isinstance(outputs, dict):
                        logits = tuple(
                            v for k, v in outputs.items() if k not in ignore_keys
                        )
                    else:
                        logits = outputs
                    # TODO: this needs to be fixed and made cleaner later.
                    if self.args.past_index >= 0:
                        self._past = outputs[self.args.past_index - 1]

        if prediction_loss_only:
            return (loss, None, None)

        logits = nested_detach(logits)
        if len(logits) == 1:
            logits = logits[0]

        return (loss, logits, labels)
        
    def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
        """
        Perform a training step on a batch of inputs.

        Subclass and override to inject custom behavior.

        Args:
            model (`nn.Module`):
                The model to train.
            inputs (`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument `labels`. Check your model's documentation for all accepted arguments.

        Return:
            `torch.Tensor`: The tensor with training loss on this batch.
        """
        model.train()
        inputs = self._prepare_inputs(inputs)

        if is_sagemaker_mp_enabled():
            loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps)
            return loss_mb.reduce_mean().detach().to(self.args.device)

        with self.compute_loss_context_manager():
            loss = self.compute_loss(model, inputs)

        del inputs
        torch.cuda.empty_cache()

        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training

        if self.use_apex:
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            self.accelerator.backward(loss)

        return loss.detach() / self.args.gradient_accumulation_steps
    
    def _save(self, output_dir: Optional[str] = None, state_dict=None):
        # If we are executing this function, we are the process zero, so we don't check for that.
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info(f"Saving model checkpoint to {output_dir}")

        supported_classes = (PreTrainedModel,) if not is_peft_available() else (PreTrainedModel, PeftModel)
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, supported_classes):
            if state_dict is None:
                state_dict = self.model.state_dict()

            if isinstance(unwrap_model(self.model), supported_classes):
                unwrap_model(self.model).save_pretrained(
                    output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
                )
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
                if self.args.save_safetensors:
                    safetensors.torch.save_file(
                        state_dict, os.path.join(output_dir, SAFE_WEIGHTS_NAME), metadata={"format": "pt"}
                    )
                else:
                    torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
        else:
            
            self.model.save_pretrained(
                output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
            )

        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))