Spaces:
Running
Running
File size: 20,617 Bytes
569f484 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
import gc
import math
import timm
import torch
from torch import Tensor
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from typing import List, Optional, Tuple, Union
from transformers import AutoConfig, AutoModelForCausalLM
from transformers import MistralForCausalLM, MistralModel, MistralConfig
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from omnilmm.model.utils import build_transform
from omnilmm.model.resampler import Resampler
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
class OmniLMMConfig(MistralConfig):
model_type = "omnilmm"
class Identity(torch.nn.Identity):
def forward(self, input: Tensor, **kwargs) -> Tensor:
return super().forward(input)
def create_vision_module(config):
vision_tower = timm.create_model('eva02_enormous_patch14_clip_224.laion2b_plus',
pretrained=False,
num_classes=0,
dynamic_img_size=True,
dynamic_img_pad=True)
if isinstance(vision_tower, timm.models.VisionTransformer):
if vision_tower.attn_pool is not None:
vision_tower.attn_pool = Identity()
# use 2nd last layer's output
vision_tower.blocks[-1] = Identity()
embed_dim = config.hidden_size
resampler = Resampler(
grid_size=int(math.sqrt(config.num_query)),
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_tower.embed_dim,
)
return vision_tower, resampler
class OmniLMMModel(MistralModel):
config_class = OmniLMMConfig
def __init__(self, config: OmniLMMConfig, mm_vision_tower=None, mm_hidden_size=None, tune_clip=True):
super(OmniLMMModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
vision_tower, resampler = create_vision_module(config)
# print(__file__, 'skip loading vision tower weights')
# HACK: for FSDP
self.vision_tower = [vision_tower]
self.resampler = resampler
if tune_clip:
self.vision_tower = self.vision_tower[0]
self.vision_config = lambda x: None
def initialize_vision_modules(self, vision_tower, no_randaug, num_query, image_size, tune_clip=False):
self.config.mm_vision_tower = vision_tower
self.config.use_mm_proj = True
self.config.num_query = num_query
self.config.image_size = image_size
if not hasattr(self, 'vision_tower'):
vision_tower, resampler = create_vision_module(self.config)
state_dict = torch.load(
'/tt/data/public/multimodal/multimodal_model_ckpts/timm/eva02_enormous_patch14_clip_224.laion2b_plus.pt')
vision_tower.load_state_dict(state_dict, strict=False)
del state_dict
gc.collect()
else:
if isinstance(self.vision_tower, list):
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
resampler = self.resampler
self.vision_tower = vision_tower if tune_clip else [vision_tower]
self.resampler = resampler
train_img_transform = build_transform(
is_train=True, randaug=not no_randaug, input_size=self.config.image_size, std_mode='OPENAI_CLIP')
eval_img_transform = build_transform(
is_train=False, input_size=self.config.image_size, std_mode='OPENAI_CLIP')
return dict(
image_processor=(train_img_transform, eval_img_transform),
image_token_len=num_query,
vision_config=self.vision_config
)
def get_vision_embedding(self, pixel_values):
if isinstance(self.vision_tower, list):
vision_tower = self.vision_tower[0] # HACK: for FSDP
else:
vision_tower = self.vision_tower
dtype = vision_tower.pos_embed.data.dtype
vision_embedding = vision_tower.forward_features(
pixel_values.type(dtype))
if hasattr(vision_tower, 'num_prefix_tokens') and vision_tower.num_prefix_tokens > 0:
vision_embedding = vision_embedding[:,
vision_tower.num_prefix_tokens:]
res = self.resampler(vision_embedding)
return res
def get_vllm_embedding(self, data):
if 'vision_hidden_states' not in data:
pixel_values_list = data['pixel_values']
vision_hidden_states = []
for pixel_values in pixel_values_list:
if len(pixel_values) > 0:
vision_hidden_states.append(self.get_vision_embedding(pixel_values.unsqueeze(0))[0])
else:
vision_hidden_states.append([])
else:
vision_hidden_states = data['vision_hidden_states']
#vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
inputs_embeds = self.embed_tokens(data['input_ids'])
vision_hidden_states = [i.type(inputs_embeds.dtype)
if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
]
# HACK: replace back original embeddings for LLaVA pretraining
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
new_input_embeds = []
cur_image_idx = 0
for cur_input_ids, cur_input_embeds in zip(data['input_ids'], inputs_embeds):
if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
new_input_embeds.append(cur_input_embeds)
continue
if self.vision_config.use_im_start_end:
cur_image_features = vision_hidden_states[cur_image_idx]
num_patches = cur_image_features.shape[0]
if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum():
raise ValueError(
"The number of image start tokens and image end tokens should be the same.")
image_start_tokens = torch.where(
cur_input_ids == self.vision_config.im_start_token)[0]
for image_start_token_pos in image_start_tokens:
cur_image_features = vision_hidden_states[cur_image_idx].to(
device=cur_input_embeds.device)
num_patches = cur_image_features.shape[0]
if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token:
raise ValueError(
"The image end token should follow the image start token.")
if orig_embeds_params is not None:
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features,
cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
else:
cur_new_input_embeds = torch.cat(
(cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
cur_image_idx += 1
new_input_embeds.append(cur_new_input_embeds)
else:
raise NotImplementedError
inputs_embeds = torch.stack(new_input_embeds, dim=0)
return inputs_embeds, vision_hidden_states
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
**kwargs
) -> Union[Tuple, BaseModelOutputWithPast]:
# HACK: replace back original embeddings for LLaVA pretraining
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
if inputs_embeds is None and past_key_values is None:
inputs_embeds = self.embed_tokens(input_ids)
vision_tower = getattr(self, 'vision_tower', None)
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.get_vision_embedding(image.unsqueeze(0))[
0]
image_features.append(image_forward_out)
else:
image_features = self.get_vision_embedding(images)
dummy_image_features = torch.zeros(
self.config.num_query,
self.config.hidden_size,
device=inputs_embeds.device,
dtype=inputs_embeds.dtype)
new_input_embeds = []
cur_image_idx = 0
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
cur_input_embeds = cur_input_embeds + \
(0. * dummy_image_features).sum()
new_input_embeds.append(cur_input_embeds)
continue
if self.vision_config.use_im_start_end:
cur_image_features = image_features[cur_image_idx]
num_patches = cur_image_features.shape[0]
if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum():
raise ValueError(
"The number of image start tokens and image end tokens should be the same.")
image_start_tokens = torch.where(
cur_input_ids == self.vision_config.im_start_token)[0]
for image_start_token_pos in image_start_tokens:
cur_image_features = image_features[cur_image_idx].to(
device=cur_input_embeds.device)
num_patches = cur_image_features.shape[0]
if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token:
raise ValueError(
"The image end token should follow the image start token.")
if orig_embeds_params is not None:
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features,
cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
else:
cur_new_input_embeds = torch.cat(
(cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
cur_image_idx += 1
new_input_embeds.append(cur_new_input_embeds)
else:
raise NotImplementedError
inputs_embeds = torch.stack(new_input_embeds, dim=0)
input_ids = None
return super(OmniLMMModel, self).forward(
input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values,
inputs_embeds=inputs_embeds, use_cache=use_cache,
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs
)
class OmniLMMForCausalLM(MistralForCausalLM):
config_class = OmniLMMConfig
def __init__(self, config, mm_vision_tower=None, tune_clip=True):
super(MistralForCausalLM, self).__init__(config)
self.model = OmniLMMModel(
config, mm_vision_tower=mm_vision_tower, tune_clip=tune_clip)
self.lm_head = nn.Linear(
config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
**kwargs
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# print(f'@@@ At forward, labels: {labels.shape}-{labels}', flush=True)
# print(f'@@@ At forward, input_ids: {input_ids.shape}-{input_ids}', flush=True)
# print(f'@@@ At forward, input_ids: {attention_mask.shape}-{attention_mask}', flush=True)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
images=images,
**kwargs
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model/pipeline parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# TODO could be removed for generate_vllm()
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images": kwargs.get("images", None),
}
)
return model_inputs
def generate_vllm(
self,
input_ids: torch.LongTensor = None,
images: Optional[torch.FloatTensor] = None,
vision_hidden_states=None,
return_vision_hidden_states=False,
**kwargs
):
model_inputs = {'input_ids': input_ids}
if vision_hidden_states is None:
model_inputs['pixel_values'] = images
else:
model_inputs['vision_hidden_states'] = vision_hidden_states
with torch.inference_mode():
inputs_embeds, vision_hidden_states = self.model.get_vllm_embedding(model_inputs)
result = self.generate(
inputs_embeds=inputs_embeds,
**kwargs
)
if return_vision_hidden_states:
return result, vision_hidden_states
return result
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
tune_mm_mlp_adapter=False):
self.model.vision_config.use_im_start_end = mm_use_im_start_end
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
self.model.vision_config.im_start_token, self.model.vision_config.im_end_token = tokenizer.convert_tokens_to_ids(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
# for new sft data
num_new_tokens = tokenizer.add_tokens(
['<box>', '</box>', '<ref>', '</ref>', '<quad>', '</quad>'], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if tune_mm_mlp_adapter:
self.model.orig_embeds_params = [
self.get_input_embeddings().weight.data.clone().to(device=device)]
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
self.model.vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
[DEFAULT_IMAGE_PATCH_TOKEN])[0]
print(f'Tokenizer: {tokenizer}\n patch_token_id: {self.model.vision_config.im_patch_token}, visoin_config: {self.model.vision_config}', flush=True)
# exit()
AutoConfig.register("omnilmm", OmniLMMConfig)
AutoModelForCausalLM.register(OmniLMMConfig, OmniLMMForCausalLM)
|