File size: 22,401 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import re
import math
from urllib.request import urlopen
from PIL import Image, ImageDraw, ImageFont
import torchvision.transforms as transforms

from vlmeval.dataset.utils import build_judge, levenshtein_distance
from vlmeval.smp import *
from .image_base import ImageBaseDataset

FAIL_MSG = 'Failed to obtain answer via API.'


def get_gpt4_ICE():
    example_1 = """
---
Question: List the primary questions asked about the services in this report.
Analysis:  The primary questions asked about the services in the report for The Limes Residential Home are:\n\n
1. Is the service safe?\n
2. Is the service effective?\n
3. Is the service caring?\n
4. Is the service responsive?\n
5. Is the service well-led?
Extracted answer: [
    'Is the servife safe?',
    'Is the service effective',
    'Is the serve caring?',
    'Is the service responsive?',
    'Is the service well-led?'
]
Answer format: List\n
"""

    example_2 = """
---
Question: How many regulations of the HSCA 2008 are breached in all according to this report?
Analysis: According to the report, the provider breached 10 Health and Social Care Act 2008 (Regulated Activities)
Regulations in total. Here are the specifics:\n\n1. Regulation 13: Safeguarding service users from abuse and
improper treatment\n2. Regulation 12: Safe care and treatment\n3. Regulation 18: Staffing\n4. Regulation 11:
Need for consent\n5. Regulation 10: Dignity and respect\n6. Regulation 9: Person-centred care\n7. Regulation 17:
Good governance\n8. Regulation 18 (CQC Registration Regulations 2009): Notification of other incidents\n9.
Regulation 18: Failure to maintain an accurate and up-to-date care plan\n10. Regulation 11: Failure to implement
the Mental Capacity Act 2005 code of practice effectively\n\nThese breaches involve issues concerning staffing,
safeguarding, medicines management, dignity and respect, consent, care planning, governance, and failure to
notify the CQC of incidents.
Extracted answer: 10
Answer format: Integer\n
"""

    example_3 = """
---
Question: According to the survey that is the percentage of Chinese who are paying more or
about the same attention to politics after Trump's election?
Analysis: The survey provided does not specify the percentage of Chinese individuals specifically who are paying
more or about the same attention to politics after Trump's election. The report focuses primarily on American
demographics and does not include specific details about the Chinese population in relation to this question. If
you need information about a different demographic or a summary of the findings from the American demographic,
I can certainly help with that!
Extracted answer: Not answerable
Answer format: String\n
"""

    example_4 = """
---
Question: How many quotations from male respondent over 50 years old are included in this report?
Analysis: The image you've provided appears to be a screenshot of a document with multiple charts. However, the
text is too small and blurry to read accurately. If you can provide a clearer image or more context, I might be
able to help you with your question.
Extracted answer: Fail to answer
Answer format: String\n
"""

    return [example_1, example_2, example_3, example_4]


def build_mmlongbench_gpt4_prompt(line):
    task_description = """
Given the question and analysis, you are tasked to extract answers with required formats from the free-form analysis.
- Your extracted answers should be one of the following formats: (1) Integer, (2) Float, (3) String and (4) List.
If you find the analysis the question can not be answered from the given documents, type "Not answerable".
Exception: If the analysis only tells you that it can not read/understand the images or documents,
type "Fail to answer".
- Please make your response as concise as possible. Also note that your response should be formatted as below:
```
Extracted answer: [answer]
Answer format: [answer format]
```
Please read the following example, then extract the answer from the model response
and type it at the end of the prompt.\n
"""
    question = line['question']
    prediction = str(line['prediction'])
    prompt = task_description
    examples = get_gpt4_ICE()
    for example in examples:
        prompt += example
    prompt += '---\nQuestion:' + question + '\n'
    prompt += 'Analysis: ' + prediction
    return prompt


def anls_compute(groundtruth, prediction, threshold=0.5):
    dist = levenshtein_distance(groundtruth, prediction)
    length = max(len(groundtruth.upper()), len(prediction.upper()))
    value = 0.0 if length == 0 else float(dist) / float(length)
    anls = 1.0 - value
    if anls <= threshold:
        anls = 0.0
    return anls


def is_float_equal(reference, prediction, include_percentage: bool = False, is_close: float = False) -> bool:
    def get_precision(gt_ans: float) -> int:
        precision = 3
        if '.' in str(gt_ans):
            precision = len(str(gt_ans).split('.')[-1])
        return precision

    reference = float(str(reference).strip().rstrip('%').strip())
    try:
        prediction = float(str(prediction).strip().rstrip('%').strip())
    except:
        return False

    if include_percentage:
        gt_result = [reference / 100, reference, reference * 100]
    else:
        gt_result = [reference]
    for item in gt_result:
        try:
            if is_close:
                if math.isclose(item, prediction, rel_tol=0.01):
                    return True
            precision = max(min(get_precision(prediction), get_precision(item)), 2)
            if round(prediction, precision) == round(item, precision):
                return True
        except Exception:
            continue
    return False


def get_clean_string(s):
    s = str(s).lower().strip()
    if s.endswith('mile'):
        s.rstrip('mile').strip()
    if s.endswith('miles'):
        s.rstrip('miles').strip()
    if s.endswith('million'):
        s.rstrip('million').strip()
    # remove parenthesis
    s = re.sub(r'\s*\([^)]*\)', '', s).strip()
    # remove quotes
    s = re.sub(r"^['\"]|['\"]$", '', s).strip()
    s = s.strip().lstrip('$').strip()
    s = s.strip().rstrip('%').strip()
    return s


def is_exact_match(s):
    flag = False
    # Website
    if 'https://' in s:
        flag = True
    # code file
    if s.endswith('.py') or s.endswith('ipynb'):
        flag = True
    if s.startswith('page'):
        flag = True
    # telephone number
    if re.fullmatch(r'\b\d+(-\d+|\s\d+)?\b', s):
        flag = True
    # time
    if 'a.m.' in s or 'p.m.' in s:
        flag = True
    # YYYY-MM-DD
    if re.fullmatch(r'\b\d{4}[-\s]\d{2}[-\s]\d{2}\b', s):
        flag = True
    # YYYY-MM
    if re.fullmatch(r'\b\d{4}[-\s]\d{2}\b', s):
        flag = True
    # Email address
    if re.fullmatch(r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}', s):
        flag = True
    return flag


def isfloat(num):
    try:
        float(num)
        return True
    except ValueError:
        return False


def get_font():
    try:
        truetype_url = 'http://opencompass.openxlab.space/utils/Fonts/SimHei.ttf'
        ff = urlopen(truetype_url)
        font = ImageFont.truetype(ff, size=40)
    except:
        print('Fail to download the font. Use the default one.')
        font = ImageFont.load_default(size=40)
    return font


def frame2img(img_path_list, font, save_path=None, idx_start=0):
    imgs = [Image.open(img_path) for img_path in img_path_list]

    new_imgs = []
    for img in imgs:
        w, h = img.size
        scale = w / h
        if w > h:
            new_w = 560 * 2
            new_h = int(560 * 2 / scale)
        else:
            new_w = int(560 * 2 * scale)
            new_h = 560 * 2
        img = transforms.functional.resize(img, [new_h, new_w],)
        new_imgs.append(img)
    imgs = new_imgs
    new_w = 0
    new_h = 0
    pad = 40
    if w > h:
        for im in imgs:
            w, h = im.size
            new_w = max(new_w, w)
            new_h += h + 10 + pad
        new_img = Image.new('RGB', (new_w, new_h), 'white')
        draw = ImageDraw.Draw(new_img)
        curr_h = 0
        for idx, im in enumerate(imgs):
            w, h = im.size
            new_img.paste(im, (0, pad + curr_h))
            draw.text((0, curr_h), f'<IMAGE {idx+idx_start}>', font=font, fill='black')
            if idx + 1 < len(imgs):
                draw.line([(0, pad + curr_h + h + 5), (new_w, pad + curr_h + h + 5)], fill='black', width=2)
            curr_h += h + 10 + pad
    else:
        for im in imgs:
            w, h = im.size
            new_w += w + 10
            new_h = max(new_h, h)
        new_h += pad
        new_img = Image.new('RGB', (new_w, new_h), 'white')
        draw = ImageDraw.Draw(new_img)
        curr_w = 0
        for idx, im in enumerate(imgs):
            w, h = im.size
            new_img.paste(im, (curr_w, pad))
            draw.text((curr_w, 0), f'<IMAGE {idx+idx_start}>', font=font, fill='black')
            if idx + 1 < len(imgs):
                draw.line([(curr_w + w + 5, 0), (curr_w + w + 5, new_h)], fill='black', width=2)
            curr_w += w + 10

    if save_path is not None:
        new_img.save(save_path)

    return new_img


def concat_images(image_list, max_concat=1, column_num=1):
    concatenated_images = []
    if column_num == -1:
        MAX_COLUMN_NUM = 20
        max_concat = 1
        while len(image_list) / max_concat > MAX_COLUMN_NUM:
            max_concat += 1
        interval = max(math.ceil(len(image_list) / max_concat), 1)
        for i in range(0, len(image_list), interval):
            batch_images = image_list[i:i + interval]
            concatenated_image = frame2img(batch_images, font=get_font(), idx_start=i)
            concatenated_images.append(concatenated_image)
    else:
        interval = max(math.ceil(len(image_list) / max_concat), 1)
        for i in range(0, len(image_list), interval):
            batch_images = [Image.open(filename) for filename in image_list[i:i + interval]]
            if column_num == 1:
                total_height = batch_images[0].height * len(batch_images)
            else:
                total_height = batch_images[0].height * ((len(batch_images) - 1) // column_num + 1)
            concatenated_image = Image.new('RGB', (batch_images[0].width * column_num, total_height), 'white')

            x_offset, y_offset = 0, 0
            for count, image in enumerate(batch_images):
                concatenated_image.paste(image, (x_offset, y_offset))
                x_offset += image.width
                if (count + 1) % column_num == 0:
                    y_offset += image.height
                    x_offset = 0
            concatenated_images.append(concatenated_image)
    return concatenated_images


def eval_score(gt, pred, answer_type):
    if answer_type == 'Int':
        try:
            gt, pred = int(gt), int(float(pred))
        except:
            pred = ''
        score = (gt == pred)
    elif answer_type == 'Float':
        try:
            gt = float(get_clean_string(str(gt)))
            pred = float(get_clean_string(str(pred)))
        except:
            pred = ''
        score = is_float_equal(gt, pred, include_percentage=True, is_close=True)
    elif answer_type == 'Str':
        gt = get_clean_string(gt)
        pred = get_clean_string(pred)
        if is_exact_match(gt):
            score = (gt == pred)
        else:
            score = anls_compute(gt, pred)
    else:
        if isinstance(gt, str) and gt.startswith('['):
            gt = eval(gt)
        if not isinstance(gt, list):
            gt = [gt]
        if isinstance(pred, str) and pred.startswith('['):
            pred = eval(pred)
        if not isinstance(pred, list):
            pred = [pred]
        print(len(gt), len(pred))
        if len(gt) != len(pred):
            score = 0.0
        else:
            gt = sorted([get_clean_string(a) for a in gt])
            pred = sorted([get_clean_string(a) for a in pred])
            print(gt, pred)
            if isfloat(gt[0]) or is_exact_match(gt[0]):
                score = ('-'.join(gt) == '-'.join(pred))
            else:
                score = min([anls_compute(gt_v, pred_v) for gt_v, pred_v in zip(gt, pred)])

    return float(score)


def MMLongBench_auxeval(model, line):
    prompt = build_mmlongbench_gpt4_prompt(line)
    log = ''
    retry = 5

    for i in range(retry):
        prediction = line['prediction']
        res = model.generate(prompt, temperature=i * 0.5)

        if FAIL_MSG in res:
            log += f'Try {i}: output is {prediction}, failed to parse.\n'
        else:
            log += 'Succeed'
            try:
                pred = res.split('Answer format:')[0].split('Extracted answer:')[1].strip()
            except:
                pred = ''
            return dict(log=log, res=res, pred=pred)
    log += 'All 5 retries failed.\n'
    return dict(log=log, res='', pred='')


def get_f1(data):
    gt_pos_data = data[data.apply(lambda k: k['answer'] != 'Not answerable', axis=1)]
    pred_pos_data = data[data.apply(lambda k: k['pred'] != 'Not answerable', axis=1)]
    recall = sum(gt_pos_data['score'].tolist()) / len(gt_pos_data)
    precision = sum(pred_pos_data['score'].tolist()) / len(pred_pos_data)
    return 2 * recall * precision / (recall + precision)


def MMLongBench_acc(result_file):
    data = load(result_file)
    overall_score = 0.0
    score_list = list()
    for i in range(len(data)):
        item = data.iloc[i]
        try:
            score = eval_score(item['answer'], item['pred'], item['answer_format'])
        except:
            score = 0.0
        score_list.append(score)
        overall_score += score

    data['score'] = score_list
    dump(data, result_file)

    data_chart = data[data.apply(lambda k: 'Chart' in eval(k['evidence_sources']), axis=1)]
    data_table = data[data.apply(lambda k: 'Table' in eval(k['evidence_sources']), axis=1)]
    data_image = data[data.apply(lambda k: 'Figure' in eval(k['evidence_sources']), axis=1)]
    data_text = data[data.apply(lambda k: 'Pure-text (Plain-text)' in eval(k['evidence_sources']), axis=1)]
    data_layout = data[data.apply(lambda k: 'Generalized-text (Layout)' in eval(k['evidence_sources']), axis=1)]

    data_single = data[data.apply(lambda k: len(eval(k['evidence_pages'])) == 1, axis=1)]
    data_multi = data[data.apply(lambda k: len(eval(k['evidence_pages'])) > 1, axis=1)]
    data_unans = data[data.apply(lambda k: len(eval(k['evidence_pages'])) == 0, axis=1)]

    res = dict()
    res['category'] = [
        'overall_f1', 'overall_acc', 'text', 'layout', 'table', 'chart',
        'image', 'single-page', 'multi-page', 'unanswerable'
    ]
    res['num'] = [
        len(data), len(data), len(data_text), len(data_layout), len(data_table),
        len(data_chart), len(data_image), len(data_single), len(data_multi), len(data_unans)
    ]
    res['avg_score'] = [
        get_f1(data),
        overall_score / len(data),
        sum(data_text['score'].tolist()) / len(data_text) if len(data_text) > 0 else 0.0,
        sum(data_layout['score'].tolist()) / len(data_layout) if len(data_layout) > 0 else 0.0,
        sum(data_table['score'].tolist()) / len(data_table) if len(data_table) > 0 else 0.0,
        sum(data_chart['score'].tolist()) / len(data_chart) if len(data_chart) > 0 else 0.0,
        sum(data_image['score'].tolist()) / len(data_image) if len(data_image) > 0 else 0.0,
        sum(data_single['score'].tolist()) / len(data_single) if len(data_single) > 0 else 0.0,
        sum(data_multi['score'].tolist()) / len(data_multi) if len(data_multi) > 0 else 0.0,
        sum(data_unans['score'].tolist()) / len(data_unans) if len(data_unans) > 0 else 0.0,
    ]
    res = pd.DataFrame(res)
    return res


class MMLongBench(ImageBaseDataset):

    TYPE = 'VQA'

    DATASET_URL = {
        'MMLongBench_DOC': 'https://opencompass.openxlab.space/utils/VLMEval/MMLongBench_DOC.tsv',
    }
    DATASET_MD5 = {
        'MMLongBench_DOC': '9b393e1f4c52718380d50586197eac9b',
    }

    SUPPORTED_MODELS = {
        'GPT4': (1, 1),
        'GPT4V': (1, 1),
        'GPT4V_HIGH': (1, 1),
        'GPT4o': (1, 1),
        'GPT4o_HIGH': (1, 1),
        'GPT4o_MINI': (1, 1),
        'MiniCPM-Llama3-V-2_5': (1, 5),
        'InternVL-Chat-V1-5': (5, 2),
        'XComposer2_4KHD': (1, 5),
        'XComposer2d5': (1, -1),
    }

    def __init__(self, dataset, **kwargs):
        self.model_list = list(self.SUPPORTED_MODELS.keys())
        model_name = kwargs['model']
        if not listinstr(self.model_list, model_name):
            raise AssertionError("{} doesn't support the evaluation on MMLongBench_DOC.".format(model_name))
        super(MMLongBench, self).__init__(dataset)

        self.is_api = True if listinstr(['GPT4'], model_name) else False
        self.max_pages = 120
        concat_num, column_num = self.SUPPORTED_MODELS.get(model_name)
        self.concat_num = concat_num
        self.column_num = column_num

    def dump_image(self, origin_line):
        os.makedirs(self.img_root, exist_ok=True)
        try:
            import fitz
        except:
            warnings.warn('Please use `pip install pymupdf` to parse PDF files.')

        line = origin_line.copy()
        line['image_path'] = line['image_path'][:self.max_pages]
        skip_pdf_parse = True
        for im_name in line['image_path']:
            path = osp.join(self.img_root, im_name)
            if not read_ok(path):
                skip_pdf_parse = False
                break

        # Just for being compatible with the zooped loop: zip(line['image'], line['image_path'])
        if skip_pdf_parse:
            line['image'] = line['image_path']
        else:
            pdf_data = base64.b64decode(line['image'])
            pdf_file = io.BytesIO(pdf_data)
            encoded_images = []
            with fitz.open(stream=pdf_file, filetype='pdf') as doc:
                doc = doc[:self.max_pages]
                for page in doc:
                    image = page.get_pixmap(dpi=144)
                    image_file = io.BytesIO(image.tobytes(output='png'))
                    image = Image.open(image_file)
                    encoded_image = encode_image_to_base64(image)
                    encoded_images.append(encoded_image)
            line['image'] = encoded_images
            print('process {}'.format(line['doc_id']))

        if 'image' in line:
            if isinstance(line['image'], list):
                tgt_path = []
                assert 'image_path' in line
                for img, im_name in zip(line['image'], line['image_path']):
                    path = osp.join(self.img_root, im_name)
                    if not read_ok(path):
                        decode_base64_to_image_file(img, path)
                    tgt_path.append(path)
            else:
                tgt_path = osp.join(self.img_root, f"{line['index']}.jpg")
                if not read_ok(tgt_path):
                    decode_base64_to_image_file(line['image'], tgt_path)
                tgt_path = [tgt_path]
        else:
            assert 'image_path' in line
            tgt_path = toliststr(line['image_path'])

        if self.concat_num > 0 and not self.is_api:
            concatenated_images = concat_images(tgt_path, max_concat=self.concat_num, column_num=self.column_num)

            old_tgt_path = tgt_path
            assert isinstance(old_tgt_path, list)
            if self.column_num != -1:
                tgt_path = [
                    '_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat{}_{}.jpg'.format(self.concat_num, i)
                    for i in range(len(concatenated_images))
                ]
            else:
                tgt_path = [
                    '_'.join(old_tgt_path[0].split('_')[:-1]) + '_concat_all_{}.jpg'.format(i)
                    for i in range(len(concatenated_images))
                ]

            for path, concatenated_image in zip(tgt_path, concatenated_images):
                if not read_ok(path):
                    decode_base64_to_image_file(encode_image_to_base64(concatenated_image), path)
                    num_images, image_size = len(old_tgt_path), concatenated_image.size
                    print('concat {} images to a new one with size {}. save at {}'.format(num_images, image_size, path))
        return tgt_path

    @classmethod
    def evaluate(self, eval_file, **judge_kwargs):
        logger = get_logger('Evaluation')
        model = judge_kwargs['model']

        suffix = eval_file.split('.')[-1]
        storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx')
        tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl')

        if osp.exists(storage):
            logger.warning(f'GPT scoring file {storage} already exists, will reuse it in MMLongBench_eval. ')
        else:
            data = load(eval_file)
            model = build_judge(max_tokens=128, **judge_kwargs)
            lt = len(data)
            lines = [data.iloc[i] for i in range(lt)]
            tups = [(model, line) for line in lines]
            indices = [line['index'] for line in lines]

            ans = {}
            if osp.exists(tmp_file):
                ans = load(tmp_file)
            tups = [x for x, i in zip(tups, indices) if i not in ans]
            indices = [i for i in indices if i not in ans]

            if len(indices):
                new_results = list()
                for model, line in tqdm(tups):
                    res = MMLongBench_auxeval(model, line)
                    new_results.append(res)

            log_map, res_map, pred_map = {}, {}, {}
            all_inds = [line['index'] for line in lines]
            for k, v in zip(all_inds, new_results):
                log_map[k] = v['log']
                res_map[k] = v['res']
                pred_map[k] = v['pred']
            data['res'] = [res_map[idx] for idx in data['index']]
            data['log'] = [log_map[idx] for idx in data['index']]
            data['pred'] = [pred_map[idx] for idx in data['index']]
            dump(data, storage)

        score = MMLongBench_acc(storage)
        score_pth = storage.replace('.xlsx', '_score.csv')

        dump(score, score_pth)
        logger.info(f'MMLongBench_eval successfully finished evaluating {eval_file}, results saved in {score_pth}')
        logger.info('Score: ')
        logger.info(score)