File size: 3,013 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from abc import abstractmethod
from ..smp import *


class VideoBaseDataset:

    MODALITY = 'VIDEO'

    def __init__(self,
                 dataset='MMBench-Video',
                 pack=False):
        try:
            import decord
        except:
            warnings.warn('Please install decord via `pip install decord`.')

        self.dataset_name = dataset
        ret = self.prepare_dataset(dataset)
        assert ret is not None
        lmu_root = LMUDataRoot()
        self.frame_root = osp.join(lmu_root, 'images', dataset)
        os.makedirs(self.frame_root, exist_ok=True)
        self.frame_tmpl = 'frame-{}-of-{}.jpg'

        self.data_root = ret['root']
        self.data_file = ret['data_file']
        self.data = load(self.data_file)

        assert 'question' in self.data and 'video' in self.data
        videos = list(set(self.data['video']))
        videos.sort()
        self.videos = videos
        self.pack = pack

    def __len__(self):
        return len(self.videos) if self.pack else len(self.data)

    def __getitem__(self, idx):
        if self.pack:
            assert idx < len(self.videos)
            sub_data = self.data[self.data['video'] == self.videos[idx]]
            return sub_data
        else:
            assert idx < len(self.data)
            return dict(self.data.iloc[idx])

    def frame_paths(self, video, num_frames=8):
        frame_root = osp.join(self.frame_root, video)
        os.makedirs(frame_root, exist_ok=True)
        return [osp.join(frame_root, self.frame_tmpl.format(i, num_frames)) for i in range(1, num_frames + 1)]

    def save_video_frames(self, video, num_frames=8):
        frame_paths = self.frame_paths(video, num_frames)
        flag = np.all([osp.exists(p) for p in frame_paths])
        if flag:
            return frame_paths
        vid_path = osp.join(self.data_root, video + '.mp4')
        vid = decord.VideoReader(vid_path)
        step_size = len(vid) / (num_frames + 1)
        indices = [int(i * step_size) for i in range(1, num_frames + 1)]
        images = [vid[i].numpy() for i in indices]
        images = [Image.fromarray(arr) for arr in images]
        for im, pth in zip(images, frame_paths):
            if not osp.exists(pth):
                im.save(pth)
        return frame_paths

    # Return a list of dataset names that are supported by this class, can override
    @classmethod
    def supported_datasets(cls):
        return ['MMBench-Video', 'Video-MME', 'MVBench']

    # Given the prediction file, return the evaluation results in the format of a dictionary or pandas dataframe
    @abstractmethod
    def evaluate(self, eval_file, **judge_kwargs):
        pass

    @abstractmethod
    def build_prompt(self, idx, num_frames=8):
        pass

    @abstractmethod
    def prepare_dataset(self, dataset):
        # The prepare_dataset function should return a dictionary containing:
        # `root` (directory that containing video files)
        # `data_file` (the TSV dataset file)
        pass