File size: 9,918 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import json
import pickle
import pandas as pd
import os
import csv
import hashlib
import os.path as osp
import time
import numpy as np
import validators
import mimetypes
import multiprocessing as mp
from .misc import toliststr
from .vlm import decode_base64_to_image_file


def decode_img_omni(tup):
    root, im, p = tup
    images = toliststr(im)
    paths = toliststr(p)
    if len(images) > 1 and len(paths) == 1:
        paths = [osp.splitext(p)[0] + f'_{i}' + osp.splitext(p)[1] for i in range(len(images))]

    assert len(images) == len(paths)
    paths = [osp.join(root, p) for p in paths]
    for p, im in zip(paths, images):
        if osp.exists(p):
            continue
        if isinstance(im, str) and len(im) > 64:
            decode_base64_to_image_file(im, p)
    return paths


def localize_df(data, dname, nproc=32):
    assert 'image' in data
    indices = list(data['index'])
    indices_str = [str(x) for x in indices]
    images = list(data['image'])
    image_map = {x: y for x, y in zip(indices_str, images)}

    root = LMUDataRoot()
    root = osp.join(root, 'images', dname)
    os.makedirs(root, exist_ok=True)

    if 'image_path' in data:
        img_paths = list(data['image_path'])
    else:
        img_paths = []
        for i in indices_str:
            if len(image_map[i]) <= 64:
                idx = image_map[i]
                assert idx in image_map and len(image_map[idx]) > 64
                img_paths.append(f'{idx}.jpg')
            else:
                img_paths.append(f'{i}.jpg')

    tups = [(root, im, p) for p, im in zip(img_paths, images)]

    pool = mp.Pool(32)
    ret = pool.map(decode_img_omni, tups)
    pool.close()
    data.pop('image')
    if 'image_path' not in data:
        data['image_path'] = [x[0] if len(x) == 1 else x for x in ret]
    return data


def LMUDataRoot():
    if 'LMUData' in os.environ and osp.exists(os.environ['LMUData']):
        return os.environ['LMUData']
    home = osp.expanduser('~')
    root = osp.join(home, 'LMUData')
    os.makedirs(root, exist_ok=True)
    return root


def MMBenchOfficialServer(dataset_name):
    root = LMUDataRoot()

    if dataset_name in ['MMBench', 'MMBench_V11', 'MMBench_CN', 'MMBench_CN_V11']:
        ans_file = f'{root}/{dataset_name}.tsv'
        if osp.exists(ans_file):
            data = load(ans_file)
            if 'answer' in data and sum([pd.isna(x) for x in data['answer']]) == 0:
                return True

    if dataset_name in ['MMBench_TEST_EN', 'MMBench_TEST_CN', 'MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11']:
        ans_file1 = f'{root}/{dataset_name}.tsv'
        mapp = {
            'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_CN': 'MMBench_CN',
            'MMBench_TEST_EN_V11': 'MMBench_V11', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11',
        }
        ans_file2 = f'{root}/{mapp[dataset_name]}.tsv'
        for f in [ans_file1, ans_file2]:
            if osp.exists(f):
                data = load(f)
                if 'answer' in data and sum([pd.isna(x) for x in data['answer']]) == 0:
                    return True
    return False


class NumpyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
                            np.int16, np.int32, np.int64, np.uint8,
                            np.uint16, np.uint32, np.uint64)):
            return int(obj)
        elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)):
            return float(obj)
        elif isinstance(obj, (np.complex_, np.complex64, np.complex128)):
            return {'real': obj.real, 'imag': obj.imag}
        elif isinstance(obj, (np.ndarray,)):
            return obj.tolist()
        elif isinstance(obj, (np.bool_)):
            return bool(obj)
        elif isinstance(obj, (np.void)):
            return None
        return json.JSONEncoder.default(self, obj)


# LOAD & DUMP
def dump(data, f, **kwargs):
    def dump_pkl(data, pth, **kwargs):
        pickle.dump(data, open(pth, 'wb'))

    def dump_json(data, pth, **kwargs):
        json.dump(data, open(pth, 'w'), indent=4, ensure_ascii=False, cls=NumpyEncoder)

    def dump_jsonl(data, f, **kwargs):
        lines = [json.dumps(x, ensure_ascii=False, cls=NumpyEncoder) for x in data]
        with open(f, 'w', encoding='utf8') as fout:
            fout.write('\n'.join(lines))

    def dump_xlsx(data, f, **kwargs):
        data.to_excel(f, index=False, engine='xlsxwriter')

    def dump_csv(data, f, quoting=csv.QUOTE_ALL):
        data.to_csv(f, index=False, encoding='utf-8', quoting=quoting)

    def dump_tsv(data, f, quoting=csv.QUOTE_ALL):
        data.to_csv(f, sep='\t', index=False, encoding='utf-8', quoting=quoting)

    handlers = dict(pkl=dump_pkl, json=dump_json, jsonl=dump_jsonl, xlsx=dump_xlsx, csv=dump_csv, tsv=dump_tsv)
    suffix = f.split('.')[-1]
    return handlers[suffix](data, f, **kwargs)


def load(f, fmt=None):
    def load_pkl(pth):
        return pickle.load(open(pth, 'rb'))

    def load_json(pth):
        return json.load(open(pth, 'r', encoding='utf-8'))

    def load_jsonl(f):
        lines = open(f, encoding='utf-8').readlines()
        lines = [x.strip() for x in lines]
        if lines[-1] == '':
            lines = lines[:-1]
        data = [json.loads(x) for x in lines]
        return data

    def load_xlsx(f):
        return pd.read_excel(f)

    def load_csv(f):
        return pd.read_csv(f)

    def load_tsv(f):
        return pd.read_csv(f, sep='\t')

    handlers = dict(pkl=load_pkl, json=load_json, jsonl=load_jsonl, xlsx=load_xlsx, csv=load_csv, tsv=load_tsv)
    if fmt is not None:
        return handlers[fmt](f)

    suffix = f.split('.')[-1]
    return handlers[suffix](f)


def download_file(url, filename=None):
    import urllib.request
    from tqdm import tqdm

    class DownloadProgressBar(tqdm):
        def update_to(self, b=1, bsize=1, tsize=None):
            if tsize is not None:
                self.total = tsize
            self.update(b * bsize - self.n)

    if filename is None:
        filename = url.split('/')[-1]

    # If HF_ENDPOINT is set, replace huggingface.co with it
    if 'huggingface.co' in url and os.environ.get('HF_ENDPOINT', '') != '':
        url = url.replace('huggingface.co', os.environ['HF_ENDPOINT'].split('://')[1])

    try:
        with DownloadProgressBar(unit='B', unit_scale=True, miniters=1, desc=url.split('/')[-1]) as t:
            urllib.request.urlretrieve(url, filename=filename, reporthook=t.update_to)
    except:
        # Handle Failed Downloads from huggingface.co
        if 'huggingface.co' in url:
            url_new = url.replace('huggingface.co', 'hf-mirror.com')
            try:
                os.system(f'wget {url_new} -O {filename}')
            except:
                raise Exception(f'Failed to download {url}')
        else:
            raise Exception(f'Failed to download {url}')

    return filename


def ls(dirname='.', match=[], mode='all', level=1):
    if isinstance(level, str):
        assert '+' in level
        level = int(level[:-1])
        res = []
        for i in range(1, level + 1):
            res.extend(ls(dirname, match=match, mode='file', level=i))
        return res

    if dirname == '.':
        ans = os.listdir(dirname)
    else:
        ans = [osp.join(dirname, x) for x in os.listdir(dirname)]
    assert mode in ['all', 'dir', 'file']
    assert level >= 1 and isinstance(level, int)
    if level == 1:
        if isinstance(match, str):
            match = [match]
        for m in match:
            if len(m) == 0:
                continue
            if m[0] != '!':
                ans = [x for x in ans if m in x]
            else:
                ans = [x for x in ans if m[1:] not in x]
        if mode == 'dir':
            ans = [x for x in ans if osp.isdir(x)]
        elif mode == 'file':
            ans = [x for x in ans if not osp.isdir(x)]
        return ans
    else:
        dirs = [x for x in ans if osp.isdir(x)]
        res = []
        for d in dirs:
            res.extend(ls(d, match=match, mode=mode, level=level - 1))
        return res


def mrlines(fname, sp='\n'):
    f = open(fname).read().split(sp)
    while f != [] and f[-1] == '':
        f = f[:-1]
    return f


def mwlines(lines, fname):
    with open(fname, 'w') as fout:
        fout.write('\n'.join(lines))


def md5(s):
    hash = hashlib.new('md5')
    if osp.exists(s):
        with open(s, 'rb') as f:
            for chunk in iter(lambda: f.read(2**20), b''):
                hash.update(chunk)
    else:
        hash.update(s.encode('utf-8'))
    return str(hash.hexdigest())


def last_modified(pth):
    stamp = osp.getmtime(pth)
    m_ti = time.ctime(stamp)
    t_obj = time.strptime(m_ti)
    t = time.strftime('%Y%m%d%H%M%S', t_obj)[2:]
    return t


def parse_file(s):
    if osp.exists(s) and s != '.':
        assert osp.isfile(s)
        suffix = osp.splitext(s)[1].lower()
        mime = mimetypes.types_map.get(suffix, 'unknown')
        return (mime, s)
    elif validators.url(s):
        suffix = osp.splitext(s)[1].lower()
        if suffix in mimetypes.types_map:
            mime = mimetypes.types_map[suffix]
            dname = osp.join(LMUDataRoot(), 'files')
            os.makedirs(dname, exist_ok=True)
            tgt = osp.join(dname, md5(s) + suffix)
            download_file(s, tgt)
            return (mime, tgt)
        else:
            return ('url', s)
    else:
        return (None, s)


def file_size(f, unit='GB'):
    stats = os.stat(f)
    div_map = {
        'GB': 2 ** 30,
        'MB': 2 ** 20,
        'KB': 2 ** 10,
    }
    return stats.st_size / div_map[unit]


def parquet_to_tsv(file_path):
    data = pd.read_parquet(file_path)
    pth = '/'.join(file_path.split('/')[:-1])
    data_name = file_path.split('/')[-1].split('.')[0]
    data.to_csv(osp.join(pth, f'{data_name}.tsv'), sep='\t', index=False)