Spaces:
Running
Running
File size: 9,918 Bytes
569f484 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import json
import pickle
import pandas as pd
import os
import csv
import hashlib
import os.path as osp
import time
import numpy as np
import validators
import mimetypes
import multiprocessing as mp
from .misc import toliststr
from .vlm import decode_base64_to_image_file
def decode_img_omni(tup):
root, im, p = tup
images = toliststr(im)
paths = toliststr(p)
if len(images) > 1 and len(paths) == 1:
paths = [osp.splitext(p)[0] + f'_{i}' + osp.splitext(p)[1] for i in range(len(images))]
assert len(images) == len(paths)
paths = [osp.join(root, p) for p in paths]
for p, im in zip(paths, images):
if osp.exists(p):
continue
if isinstance(im, str) and len(im) > 64:
decode_base64_to_image_file(im, p)
return paths
def localize_df(data, dname, nproc=32):
assert 'image' in data
indices = list(data['index'])
indices_str = [str(x) for x in indices]
images = list(data['image'])
image_map = {x: y for x, y in zip(indices_str, images)}
root = LMUDataRoot()
root = osp.join(root, 'images', dname)
os.makedirs(root, exist_ok=True)
if 'image_path' in data:
img_paths = list(data['image_path'])
else:
img_paths = []
for i in indices_str:
if len(image_map[i]) <= 64:
idx = image_map[i]
assert idx in image_map and len(image_map[idx]) > 64
img_paths.append(f'{idx}.jpg')
else:
img_paths.append(f'{i}.jpg')
tups = [(root, im, p) for p, im in zip(img_paths, images)]
pool = mp.Pool(32)
ret = pool.map(decode_img_omni, tups)
pool.close()
data.pop('image')
if 'image_path' not in data:
data['image_path'] = [x[0] if len(x) == 1 else x for x in ret]
return data
def LMUDataRoot():
if 'LMUData' in os.environ and osp.exists(os.environ['LMUData']):
return os.environ['LMUData']
home = osp.expanduser('~')
root = osp.join(home, 'LMUData')
os.makedirs(root, exist_ok=True)
return root
def MMBenchOfficialServer(dataset_name):
root = LMUDataRoot()
if dataset_name in ['MMBench', 'MMBench_V11', 'MMBench_CN', 'MMBench_CN_V11']:
ans_file = f'{root}/{dataset_name}.tsv'
if osp.exists(ans_file):
data = load(ans_file)
if 'answer' in data and sum([pd.isna(x) for x in data['answer']]) == 0:
return True
if dataset_name in ['MMBench_TEST_EN', 'MMBench_TEST_CN', 'MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11']:
ans_file1 = f'{root}/{dataset_name}.tsv'
mapp = {
'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_CN': 'MMBench_CN',
'MMBench_TEST_EN_V11': 'MMBench_V11', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11',
}
ans_file2 = f'{root}/{mapp[dataset_name]}.tsv'
for f in [ans_file1, ans_file2]:
if osp.exists(f):
data = load(f)
if 'answer' in data and sum([pd.isna(x) for x in data['answer']]) == 0:
return True
return False
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)):
return int(obj)
elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)):
return float(obj)
elif isinstance(obj, (np.complex_, np.complex64, np.complex128)):
return {'real': obj.real, 'imag': obj.imag}
elif isinstance(obj, (np.ndarray,)):
return obj.tolist()
elif isinstance(obj, (np.bool_)):
return bool(obj)
elif isinstance(obj, (np.void)):
return None
return json.JSONEncoder.default(self, obj)
# LOAD & DUMP
def dump(data, f, **kwargs):
def dump_pkl(data, pth, **kwargs):
pickle.dump(data, open(pth, 'wb'))
def dump_json(data, pth, **kwargs):
json.dump(data, open(pth, 'w'), indent=4, ensure_ascii=False, cls=NumpyEncoder)
def dump_jsonl(data, f, **kwargs):
lines = [json.dumps(x, ensure_ascii=False, cls=NumpyEncoder) for x in data]
with open(f, 'w', encoding='utf8') as fout:
fout.write('\n'.join(lines))
def dump_xlsx(data, f, **kwargs):
data.to_excel(f, index=False, engine='xlsxwriter')
def dump_csv(data, f, quoting=csv.QUOTE_ALL):
data.to_csv(f, index=False, encoding='utf-8', quoting=quoting)
def dump_tsv(data, f, quoting=csv.QUOTE_ALL):
data.to_csv(f, sep='\t', index=False, encoding='utf-8', quoting=quoting)
handlers = dict(pkl=dump_pkl, json=dump_json, jsonl=dump_jsonl, xlsx=dump_xlsx, csv=dump_csv, tsv=dump_tsv)
suffix = f.split('.')[-1]
return handlers[suffix](data, f, **kwargs)
def load(f, fmt=None):
def load_pkl(pth):
return pickle.load(open(pth, 'rb'))
def load_json(pth):
return json.load(open(pth, 'r', encoding='utf-8'))
def load_jsonl(f):
lines = open(f, encoding='utf-8').readlines()
lines = [x.strip() for x in lines]
if lines[-1] == '':
lines = lines[:-1]
data = [json.loads(x) for x in lines]
return data
def load_xlsx(f):
return pd.read_excel(f)
def load_csv(f):
return pd.read_csv(f)
def load_tsv(f):
return pd.read_csv(f, sep='\t')
handlers = dict(pkl=load_pkl, json=load_json, jsonl=load_jsonl, xlsx=load_xlsx, csv=load_csv, tsv=load_tsv)
if fmt is not None:
return handlers[fmt](f)
suffix = f.split('.')[-1]
return handlers[suffix](f)
def download_file(url, filename=None):
import urllib.request
from tqdm import tqdm
class DownloadProgressBar(tqdm):
def update_to(self, b=1, bsize=1, tsize=None):
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
if filename is None:
filename = url.split('/')[-1]
# If HF_ENDPOINT is set, replace huggingface.co with it
if 'huggingface.co' in url and os.environ.get('HF_ENDPOINT', '') != '':
url = url.replace('huggingface.co', os.environ['HF_ENDPOINT'].split('://')[1])
try:
with DownloadProgressBar(unit='B', unit_scale=True, miniters=1, desc=url.split('/')[-1]) as t:
urllib.request.urlretrieve(url, filename=filename, reporthook=t.update_to)
except:
# Handle Failed Downloads from huggingface.co
if 'huggingface.co' in url:
url_new = url.replace('huggingface.co', 'hf-mirror.com')
try:
os.system(f'wget {url_new} -O {filename}')
except:
raise Exception(f'Failed to download {url}')
else:
raise Exception(f'Failed to download {url}')
return filename
def ls(dirname='.', match=[], mode='all', level=1):
if isinstance(level, str):
assert '+' in level
level = int(level[:-1])
res = []
for i in range(1, level + 1):
res.extend(ls(dirname, match=match, mode='file', level=i))
return res
if dirname == '.':
ans = os.listdir(dirname)
else:
ans = [osp.join(dirname, x) for x in os.listdir(dirname)]
assert mode in ['all', 'dir', 'file']
assert level >= 1 and isinstance(level, int)
if level == 1:
if isinstance(match, str):
match = [match]
for m in match:
if len(m) == 0:
continue
if m[0] != '!':
ans = [x for x in ans if m in x]
else:
ans = [x for x in ans if m[1:] not in x]
if mode == 'dir':
ans = [x for x in ans if osp.isdir(x)]
elif mode == 'file':
ans = [x for x in ans if not osp.isdir(x)]
return ans
else:
dirs = [x for x in ans if osp.isdir(x)]
res = []
for d in dirs:
res.extend(ls(d, match=match, mode=mode, level=level - 1))
return res
def mrlines(fname, sp='\n'):
f = open(fname).read().split(sp)
while f != [] and f[-1] == '':
f = f[:-1]
return f
def mwlines(lines, fname):
with open(fname, 'w') as fout:
fout.write('\n'.join(lines))
def md5(s):
hash = hashlib.new('md5')
if osp.exists(s):
with open(s, 'rb') as f:
for chunk in iter(lambda: f.read(2**20), b''):
hash.update(chunk)
else:
hash.update(s.encode('utf-8'))
return str(hash.hexdigest())
def last_modified(pth):
stamp = osp.getmtime(pth)
m_ti = time.ctime(stamp)
t_obj = time.strptime(m_ti)
t = time.strftime('%Y%m%d%H%M%S', t_obj)[2:]
return t
def parse_file(s):
if osp.exists(s) and s != '.':
assert osp.isfile(s)
suffix = osp.splitext(s)[1].lower()
mime = mimetypes.types_map.get(suffix, 'unknown')
return (mime, s)
elif validators.url(s):
suffix = osp.splitext(s)[1].lower()
if suffix in mimetypes.types_map:
mime = mimetypes.types_map[suffix]
dname = osp.join(LMUDataRoot(), 'files')
os.makedirs(dname, exist_ok=True)
tgt = osp.join(dname, md5(s) + suffix)
download_file(s, tgt)
return (mime, tgt)
else:
return ('url', s)
else:
return (None, s)
def file_size(f, unit='GB'):
stats = os.stat(f)
div_map = {
'GB': 2 ** 30,
'MB': 2 ** 20,
'KB': 2 ** 10,
}
return stats.st_size / div_map[unit]
def parquet_to_tsv(file_path):
data = pd.read_parquet(file_path)
pth = '/'.join(file_path.split('/')[:-1])
data_name = file_path.split('/')[-1].split('.')[0]
data.to_csv(osp.join(pth, f'{data_name}.tsv'), sep='\t', index=False)
|