File size: 6,039 Bytes
569f484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
## MiniCPM-V 1.0


> Archive at๏ผš2024-05-19

MiniCPM-V 1.0 is an efficient version with promising performance for deployment. The model is built based on SigLip-400M and [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/), connected by a perceiver resampler. Notable features of MiniCPM-V 1.0 include:

- โšก๏ธ **High Efficiency.** 

  MiniCPM-V 1.0 can be **efficiently deployed on most GPU cards and personal computers**, and **even on end devices such as mobile phones**. In terms of visual encoding, we compress the image representations into 64 tokens via a perceiver resampler, which is significantly fewer than other LMMs based on MLP architecture (typically > 512 tokens). This allows MiniCPM-V 1.0 to operate with **much less memory cost and higher speed during inference**.

- ๐Ÿ”ฅ **Promising Performance.** 

  MiniCPM-V 1.0 achieves **state-of-the-art performance** on multiple benchmarks (including MMMU, MME, and MMbech, etc) among models with comparable sizes, surpassing existing LMMs built on Phi-2. It even **achieves comparable or better performance than the 9.6B Qwen-VL-Chat**.

- ๐Ÿ™Œ **Bilingual Support.** 

  MiniCPM-V 1.0 is **the first end-deployable LMM supporting bilingual multimodal interaction in English and Chinese**. This is achieved by generalizing multimodal capabilities across languages, a technique from the ICLR 2024 spotlight [paper](https://arxiv.org/abs/2308.12038).

### Evaluation

<div align="center">

<table style="margin: 0px auto;">
<thead>
  <tr>
    <th align="left">Model</th>
    <th>Size</th>
    <th nowrap="nowrap" >Visual Tokens</th>
    <th>MME</th>
    <th nowrap="nowrap" >MMB dev (en)</th>
    <th nowrap="nowrap" >MMB dev (zh)</th>
    <th nowrap="nowrap" >MMMU val</th>
    <th nowrap="nowrap" >CMMMU val</th>
  </tr>
</thead>
<tbody align="center">
  <tr>
    <td align="left">LLaVA-Phi</td>
    <td align="right">3B</td>
    <td>576</td>
    <td>1335</td>
    <td>59.8</td>
    <td>- </td>
    <td>- </td>
    <td>- </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left">MobileVLM</td>
    <td align="right">3B</td>
    <td>144</td>
    <td>1289</td>
    <td>59.6</td>
    <td>- </td>
    <td>- </td>
    <td>- </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left" >Imp-v1</td>
    <td align="right">3B</td>
    <td>576</td>
    <td>1434</td>
    <td>66.5</td>
    <td>- </td>
    <td>- </td>
    <td>- </td>
  </tr>
  <tr>
    <td  nowrap="nowrap" align="left" >Qwen-VL-Chat</td>
    <td align="right" >9.6B</td>
    <td>256</td>
    <td>1487</td>
    <td>60.6 </td>
    <td>56.7 </td>
    <td>35.9 </td>
    <td>30.7 </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left" >CogVLM</td>
    <td align="right">17.4B </td>
    <td>1225</td>
    <td>1438 </td>
    <td>63.7 </td>
    <td>53.8 </td>
    <td>32.1 </td>
    <td>- </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left" ><b>MiniCPM-V 1.0</b></td>
    <td align="right">3B </td>
    <td>64</td>
    <td>1452 </td>
    <td>67.9 </td>
    <td>65.3 </td>
    <td>37.2 </td>
    <td>32.1 </td>
  </tr>
</tbody>
</table>

</div>

### Examples

We deploy MiniCPM-V 1.0 on end devices. The demo video is the raw screen recording on a OnePlus 9R without edition.

<table align="center">
    <p align="center">
      <img src="assets/gif_cases/่›‡_cn.gif" width=36%/>
      <img src="assets/gif_cases/Mushroom_en.gif" width=36%/>
    </p>
</table>

## Install

1. Clone this repository and navigate to the source folder

```bash
git clone https://github.com/OpenBMB/OmniLMM.git
cd OmniLMM
```

2. Create conda environment

```Shell
conda create -n OmniLMM python=3.10 -y
conda activate OmniLMM
```

3. Install dependencies

```shell
pip install -r requirements.txt
```

## Inference

### Model Zoo
| Model                | Description       | Download Link |
|:----------------------|:-------------------|:---------------:|
| MiniCPM-V 1.0  | The efficient version for end device deployment.    |  [๐Ÿค—](https://huggingface.co/openbmb/MiniCPM-V) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V/files) |


### Multi-turn Conversation
Please refer to the following codes to run `MiniCPM-V 1.0`.

<div align="center">
<img src="assets/worldmap_ck.jpg" width="500px">
</div>


```python
from chat import OmniLMMChat, img2base64

chat_model = OmniLMMChat('openbmb/MiniCPM-V')

im_64 = img2base64('./assets/worldmap_ck.jpg')

# First round chat 
msgs = [{"role": "user", "content": "What is interesting about this image?"}]

inputs = {"image": im_64, "question": json.dumps(msgs)}
answer = chat_model.chat(inputs)
print(answer)

# Second round chat 
# pass history context of multi-turn conversation
msgs.append({"role": "assistant", "content": answer})
msgs.append({"role": "user", "content": "Where is China in the image"})

inputs = {"image": im_64, "question": json.dumps(msgs)}
answer = chat_model.chat(inputs)
print(answer)
```


### Inference on Mac
<details>
<summary>Click to view example, MiniCPM-V 1.0 can run on Mac with MPS (Apple silicon or AMD GPUs). </summary>

```python
# test.py
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained('openbmb/MiniCPM-V', trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to(device='mps', dtype=torch.float16)

tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V', trust_remote_code=True)
model.eval()

image = Image.open('./assets/worldmap_ck.jpg').convert('RGB')
question = 'What is interesting about this image?'
msgs = [{'role': 'user', 'content': question}]

answer, context, _ = model.chat(
    image=image,
    msgs=msgs,
    context=None,
    tokenizer=tokenizer,
    sampling=True
)
print(answer)
```
Run with command:
```shell
PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py
```
</details>

### Deployment on Mobile Phone

Currently MiniCPM-V 1.0 can be deployed on mobile phones with Android and Harmony operating systems. ๐Ÿš€ Try it out [here](https://github.com/OpenBMB/mlc-MiniCPM).