Spaces:
Running
Running
File size: 13,512 Bytes
569f484 a2d4767 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import cv2 as cv
import numpy as np
import torch
from gensim import models
import xgboost as xgb
import XGBoost_utils
import sys
import joblib
from DL_models import CustomResNet
#Ad/Brand Gaze Prediction
#Now the model is only able to process magazine images or images with full-page counterpages
#Please indicate where is the ad by ad_location parameter: left <- ad_location=0, right <- ad_location=1; otherwise, set it as None
def Ad_Gaze_Prediction(input_ad_path, input_ctpg_path, ad_location,
text_detection_model_path, LDA_model_pth, training_ad_text_dictionary_path, training_lang_preposition_path,
training_language, ad_embeddings, ctpg_embeddings,
surface_sizes=None, Product_Group=None, TextBoxes=None, Obj_and_Topics=None,
obj_detection_model_pth=None, num_topic=20, Gaze_Time_Type='Brand', Info_printing=True):
##Image Loading
if Info_printing: print('Loading Image ......')
flag_full_page_ad = False
has_ctpg = True
if type(input_ad_path) == str:
ad_img = cv.imread(input_ad_path)
ad_img = cv.cvtColor(ad_img, cv.COLOR_BGR2RGB)
ad_img_dim1, ad_img_dim2 = ad_img.shape[:2]
dim1_scale = int(np.ceil(ad_img_dim1/32))
dim2_scale = int(np.ceil(ad_img_dim2/32))
ad_img = cv.resize(ad_img, (32*dim2_scale,32*dim1_scale))
else:
ad_img = input_ad_path
if input_ctpg_path is None:
ctpg_img = None #Initialization
flag_full_page_ad = True
has_ctpg = False
else:
if type(input_ctpg_path) == str:
ctpg_img = cv.imread(input_ctpg_path)
ctpg_img = cv.cvtColor(ctpg_img, cv.COLOR_BGR2RGB)
ctpg_img_dim1, ctpg_img_dim2 = ctpg_img.shape[:2]
dim1_scale = int(np.ceil(ctpg_img_dim1/32))
dim2_scale = int(np.ceil(ctpg_img_dim2/32))
ctpg_img = cv.resize(ctpg_img, (32*dim2_scale,32*dim1_scale))
else:
ctpg_img = input_ctpg_path
#ctpg_img_dim1, ctpg_img_dim2 = [None,None]
# ctpg_img = None #Initialization
# flag_full_page_ad = False
# if has_ctpg:
# img = cv.resize(img, (1280,1024))
# h, w, _ = img.shape
# page_width = w // 2
# ctpg_location = 1-ad_location
# ad_img = img[:, (ad_location*page_width):((ad_location+1)*page_width)]
# ctpg_img = img[:, (ctpg_location*page_width):((ctpg_location+1)*page_width)]
# else:
# #if image's width is larger its height, then treat it as a double-page ad
# h, w, _ = img.shape
# if w > h:
# ad_img = cv.resize(img, (1280,1024))
# flag_full_page_ad = True
# else:
# ad_img = cv.resize(img, (640,1024))
if Info_printing: print()
##File Size
if Info_printing: print('Calculating complexity (filsize) ......')
filesize_ad = XGBoost_utils.filesize_individual(input_ad_path)
if has_ctpg:
filesize_ctpg = XGBoost_utils.filesize_individual(input_ctpg_path)
else:
filesize_ctpg = 0
if Info_printing: print()
##Salience
if Info_printing: print('Processing Salience Information ......')
#Salience Map
S_map_ad = XGBoost_utils.Itti_Saliency(ad_img, scale_final=3)
if has_ctpg:
S_map_ctpg = XGBoost_utils.Itti_Saliency(ctpg_img, scale_final=3)
#K-Mean
threshold = 0.001
enhance_rate = 1
num_clusters = 3
if flag_full_page_ad:
width = S_map_ad.shape[1]
left = S_map_ad[:, :width//2]
vecs_left, km_left = XGBoost_utils.salience_matrix_conv(left,threshold,num_clusters,enhance_rate=enhance_rate)
_,scores_left,widths_left,D_left = XGBoost_utils.img_clusters(num_clusters, left, km_left.labels_, km_left.cluster_centers_, vecs_left)
right = S_map_ad[:, width//2:]
vecs_right, km_right = XGBoost_utils.salience_matrix_conv(right,threshold,num_clusters,enhance_rate=enhance_rate)
_,scores_right,widths_right,D_right = XGBoost_utils.img_clusters(num_clusters, right, km_right.labels_, km_right.cluster_centers_, vecs_right)
ad_sal = np.array(scores_left) + np.array(scores_right)
ad_width = np.array(widths_left) + np.array(widths_right); ad_width = np.log(ad_width+1)
ad_sig_obj = D_left + D_right
ctpg_sal = np.zeros_like(ad_sal)
ctpg_width = np.zeros_like(ad_width)
ctpg_sig_obj = 0
else:
vecs, km = XGBoost_utils.salience_matrix_conv(S_map_ad,threshold,num_clusters,enhance_rate=enhance_rate)
_,scores,widths,D = XGBoost_utils.img_clusters(num_clusters, S_map_ad, km.labels_, km.cluster_centers_, vecs)
ad_sal = np.array(scores)
ad_width = np.log(np.array(widths)+1)
ad_sig_obj = D
if has_ctpg:
vecs, km = XGBoost_utils.salience_matrix_conv(S_map_ctpg,threshold,num_clusters,enhance_rate=enhance_rate)
_,scores,widths,D = XGBoost_utils.img_clusters(num_clusters, S_map_ctpg, km.labels_, km.cluster_centers_, vecs)
ctpg_sal = np.array(scores)
ctpg_width = np.log(np.array(widths)+1)
ctpg_sig_obj = D
else:
ctpg_sal = np.zeros_like(ad_sal)
ctpg_width = np.zeros_like(ad_width)
ctpg_sig_obj = 0
if Info_printing: print()
##Number of Textboxes
if Info_printing: print('Processing Textboxes ......')
if TextBoxes is None:
#Need multiples of 32 in both dimensions
ad_num_textboxes = XGBoost_utils.text_detection_east(ad_img, text_detection_model_path)
if has_ctpg:
ctpg_num_textboxes = XGBoost_utils.text_detection_east(ctpg_img, text_detection_model_path)
else:
ctpg_num_textboxes = 0
else:
ad_num_textboxes, ctpg_num_textboxes = TextBoxes
if Info_printing: print()
##Objects and Topic Difference
if Info_printing: print('Processing Object and Topic Information ......')
if Info_printing: print('Loading Object Detection Model')
if Obj_and_Topics is None:
if obj_detection_model_pth is None:
model_obj = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, trust_repo=True)
else:
model_obj = torch.load(obj_detection_model_pth)
model_lda = models.LdaModel.load(LDA_model_pth)
dictionary = torch.load(training_ad_text_dictionary_path)
dutch_preposition = torch.load(training_lang_preposition_path)
ad_num_objs, ctpg_num_objs, ad_topic_weights, topic_Diff = XGBoost_utils.object_and_topic_variables(ad_img, ctpg_img, has_ctpg, dictionary,
dutch_preposition, training_language, model_obj,
model_lda, num_topic)
else:
ad_num_objs, ctpg_num_objs, ad_topic_soft_weights, ctpg_topic_soft_weights = Obj_and_Topics
indx = np.argmax(ad_topic_soft_weights)
ad_topic_weights = np.zeros(num_topic)
ad_topic_weights[indx] = 1
topic_Diff = XGBoost_utils.KL_dist(ad_topic_soft_weights, ctpg_topic_soft_weights)
if Info_printing: print()
##Left and Right Indicator
if Info_printing: print('Getting Left/Right Indicator ......')
if flag_full_page_ad:
Left_right_indicator = [1,1]
else:
if has_ctpg:
if ad_location == 0:
Left_right_indicator = [1,0]
elif ad_location == 1:
Left_right_indicator = [0,1]
else:
Left_right_indicator = [1,1]
else:
Left_right_indicator = [1,0]
if Info_printing: print()
##Product Category
if Info_printing: print('Getting Product Category Indicator ......')
if Product_Group is None:
group_ind = XGBoost_utils.product_category()
else:
group_ind = Product_Group
if Info_printing: print()
##Surface Sizes
if Info_printing: print('Getting Surface Sizes ......')
if surface_sizes is None:
ad_img = cv.cvtColor(ad_img, cv.COLOR_RGB2BGR)
print('Please select the bounding box for your ad (from top left to bottom right)')
A = XGBoost_utils.Region_Selection(ad_img)
print()
print('Please select the bounding box for brands (from top left to bottom right)')
B = XGBoost_utils.Region_Selection(ad_img)
print()
print('Please select the bounding box for texts (from top left to bottom right)')
T = XGBoost_utils.Region_Selection(ad_img)
surface_sizes = [B/A*100,(1-B/A-T/A)*100,T/A*100,sum(Left_right_indicator)*5]
##Typicality Measure
# if Info_printing: print('Calculating Typicality Measure ......')
# if Info_printing: print()
##Get All things together
if Info_printing: print('Predicting ......')
gaze = 0
for i in range(10):
#Var construction
pca_topic_transform = joblib.load('Topic_Embedding_PCAs/pca_model_'+str(i)+'.pkl')
ad_topics_curr = pca_topic_transform.transform(ad_embeddings)[:,:4][0]
ctpg_topics_curr = pca_topic_transform.transform(ctpg_embeddings)[:,:4][0]
ad_topic_weights = ad_topics_curr
topic_Diff = np.linalg.norm(ad_topics_curr-ctpg_topics_curr)
X = surface_sizes+[filesize_ad,filesize_ctpg]+list(ad_sal)+list(ctpg_sal)+list(ad_width)+list(ctpg_width)+[ad_sig_obj,ctpg_sig_obj]+[ad_num_textboxes,ctpg_num_textboxes,ad_num_objs,ctpg_num_objs]+list(group_ind)+list(ad_topic_weights)
X = np.array(X).reshape(1,len(X))
X_for_typ = list(X[0,[0,1,2,3,4,6,7,8,12,13,14,18,20,22]])+list(group_ind)+list(ad_topic_weights)
X_for_typ = np.array(X_for_typ).reshape(1,len(X_for_typ))
if Gaze_Time_Type == 'Brand':
med = torch.load('Brand_Gaze_Model/typicality_train_medoid')
elif Gaze_Time_Type == 'Ad':
med = torch.load('Ad_Gaze_Model/typicality_train_medoid')
typ = XGBoost_utils.typ_cat(med, X_for_typ, group_ind, np.abs)
Var = surface_sizes+[filesize_ad,filesize_ctpg]+list(ad_sal)+list(ctpg_sal)+list(ad_width)+list(ctpg_width)+[ad_sig_obj,ctpg_sig_obj]+[ad_num_textboxes,ctpg_num_textboxes,ad_num_objs,ctpg_num_objs]+Left_right_indicator+list(ad_topic_weights)+list(group_ind)+[topic_Diff.item(),typ.item()]
Var = np.array(Var).reshape(1,len(Var))
xgb_model = xgb.XGBRegressor()
if Gaze_Time_Type == 'Brand':
xgb_model.load_model('Brand_Gaze_Model/10_models/Model_'+str(i+1)+'.json')
elif Gaze_Time_Type == 'Ad':
xgb_model.load_model('Ad_Gaze_Model/10_models/Model_'+str(i+1)+'.json')
gaze += xgb_model.predict(Var)
gaze = gaze/10
if Info_printing: print('The predicted '+Gaze_Time_Type+' gaze time is: ', (np.exp(gaze)-1).item())
return (np.exp(gaze)-1).item()
def CNN_Prediction(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG'): #Gaze_Type='AG' or 'BG'
gaze = 0
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
device = 'mps'
else:
device = 'cpu'
if Gaze_Type == 'AG':
a_temp = 0.2590; b_temp = 1.1781 #AG
elif Gaze_Type == 'BG':
a_temp = 0.2100; b_temp = 0.3541 #BG
for i in range(10):
net = CustomResNet()
net.load_state_dict(torch.load('CNN_Gaze_Model/Fine-tune_'+Gaze_Type+'/Model_'+str(i)+'.pth',map_location=torch.device('cpu')))
net = net.to(device)
with torch.no_grad():
pred = net.forward(adv_imgs, ctpg_imgs, ad_locations)
pred = torch.exp(pred*a_temp+b_temp) - 1
gaze += pred/10
return gaze
def HeatMap_CNN(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG'):
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
device = 'mps'
else:
device = 'cpu'
net = CustomResNet()
net.load_state_dict(torch.load('CNN_Gaze_Model/Fine-tune_'+Gaze_Type+'/Model_'+str(0)+'.pth',map_location=torch.device('cpu')))
net = net.to(device)
pred = net(adv_imgs/255.0,ctpg_imgs/255.0,ad_locations)
pred.backward()
# pull the gradients out of the model
gradients = net.get_activations_gradient()
# pool the gradients across the channels
pooled_gradients = torch.mean(gradients, dim=[0, 2, 3])
# get the activations of the last convolutional layer
activations = net.get_activations(adv_imgs).detach()
# weight the channels by corresponding gradients
for i in range(512):
activations[:, i, :, :] *= pooled_gradients[i]
# average the channels of the activations
heatmap = torch.mean(activations, dim=1).squeeze().to('cpu')
# relu on top of the heatmap
# expression (2) in https://arxiv.org/pdf/1610.02391.pdf
heatmap = np.maximum(heatmap, 0)
# normalize the heatmap
heatmap /= torch.max(heatmap)
img = torch.permute(adv_imgs[0],(1,2,0)).to(torch.uint8).numpy()
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
heatmap = cv.resize(heatmap.numpy(), (img.shape[1], img.shape[0]))
heatmap = np.uint8(255 * heatmap)
heatmap = cv.applyColorMap(heatmap, cv.COLORMAP_TURBO)
superimposed_img = heatmap * 0.8 + img * 0.5
superimposed_img /= np.max(superimposed_img)
superimposed_img = np.uint8(255 * superimposed_img)
return superimposed_img |