XGBoost_Gaze / Magazine_Optimization_Demo /Magazine_Optimization.py
Demo750's picture
Upload folder using huggingface_hub
569f484 verified
raw
history blame
19.1 kB
import sys
sys.path.append('XGBoost_Prediction_Model/')
import warnings
warnings.filterwarnings("ignore")
import cv2 as cv
import numpy as np
from pulp import *
import Predict
import torch
from torchvision.io import read_image
#Global Paths for Models and Dictionaries
text_detection_model_path = 'XGBoost_Prediction_Model/EAST-Text-Detection/frozen_east_text_detection.pb'
LDA_model_pth = 'XGBoost_Prediction_Model/LDA_Model_trained/lda_model_best_tot.model'
training_ad_text_dictionary_path = 'XGBoost_Prediction_Model/LDA_Model_trained/object_word_dictionary'
training_lang_preposition_path = 'XGBoost_Prediction_Model/LDA_Model_trained/dutch_preposition'
def Preference_Matrix(Magazine_Pages, Magazine_Slots, Ad_Groups, Ad_Element_Sizes,
Ad_embeddings, Ctpg_embeddings,
Textboxes=None, Obj_and_Topics=None, Costs=None,
Method='XGBoost'):
#Magazine_Pages: A list containing all paths to Magazine Ads and Editorials
#Magazine_Slots: 0 (right), 1 (left), 2 (full-page)
#Costs Specification
if Costs is None:
Costs = np.ones(len(Magazine_Pages))
#Separate Images into Ads and Counterpages
Ads = []
Counterpages = []
Assign_ids = []
Costs_Ctpg = []
ad_locations = []
prod_groups = []
ad_elements = []
ad_embeds = []
ctpg_embeds = []
if Textboxes is not None:
ad_textbox = []; ctpg_textbox = []
if Obj_and_Topics is not None:
ad_num_obj = []; ctpg_num_obj = []
ad_topic_weight = []; ctpg_topic_weight = []
double_page_ad_attention = []
double_page_brand_attention = []
for i, path in enumerate(Magazine_Pages):
if Magazine_Slots[i] == 2:
if Textboxes is None:
textboxes_curr = None
else:
textboxes_curr = Textboxes[i]
if Obj_and_Topics is None:
obj_and_topics_curr = None
else:
obj_and_topics_curr = Obj_and_Topics[i]
if Method == 'XGBoost':
ad_attention = Predict.Ad_Gaze_Prediction(input_ad_path=path, input_ctpg_path=None, ad_location=None,
text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth, training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path,
training_language='dutch', ad_embeddings=Ad_embeddings[i].reshape(1,768), ctpg_embeddings=Ctpg_embeddings[i].reshape(1,768),
surface_sizes=list(Ad_Element_Sizes[i]), Product_Group=list(Ad_Groups[i]), TextBoxes=textboxes_curr, Obj_and_Topics=obj_and_topics_curr,
obj_detection_model_pth=None, num_topic=20, Gaze_Time_Type='Ad', Info_printing=False)
brand_attention = Predict.Ad_Gaze_Prediction(input_ad_path=path, input_ctpg_path=None, ad_location=None,
text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth,
training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path,
training_language='dutch', ad_embeddings=Ad_embeddings[i].reshape(1,768), ctpg_embeddings=Ctpg_embeddings[i].reshape(1,768),
surface_sizes=list(Ad_Element_Sizes[i]), Product_Group=list(Ad_Groups[i]), TextBoxes=textboxes_curr, Obj_and_Topics=obj_and_topics_curr,
obj_detection_model_pth=None, num_topic=20, Gaze_Time_Type='Brand', Info_printing=False)
elif Method == 'CNN':
img_curr = read_image(path)[:,89:921,:].unsqueeze(0)
ad_img_CNN = img_curr[:,:,:,:640]
ctpg_img_CNN = img_curr[:,:,:,640:]
ad_location = torch.tensor([[1,1]])
ad_attention = Predict.CNN_Prediction(ad_img_CNN, ctpg_img_CNN, ad_location, Gaze_Type='AG').item()
brand_attention = Predict.CNN_Prediction(ad_img_CNN, ctpg_img_CNN, ad_location, Gaze_Type='BG').item()
double_page_ad_attention.append(ad_attention/Costs[i])
double_page_brand_attention.append(brand_attention/Costs[i])
else:
Assign_ids.append(i)
img_curr = cv.imread(path)
img_curr = cv.resize(img_curr, (1280,1024))
_, w, _ = img_curr.shape
page_width = w // 2
ad_locations.append(1-Magazine_Slots[i])
ctpg_location = Magazine_Slots[i]
ad_img = img_curr[:, (Magazine_Slots[i]*page_width):((Magazine_Slots[i]+1)*page_width)]
ctpg_img = img_curr[:, (ctpg_location*page_width):((ctpg_location+1)*page_width)]
Ads.append(ad_img)
Counterpages.append(ctpg_img)
prod_groups.append(Ad_Groups[i])
ad_elements.append(Ad_Element_Sizes[i])
Costs_Ctpg.append(Costs[i])
ad_embeds.append(Ad_embeddings[i])
ctpg_embeds.append(Ctpg_embeddings[i])
if Textboxes is not None:
ad_textbox_curr, ctpg_textbox_curr = Textboxes[i]
ad_textbox.append(ad_textbox_curr); ctpg_textbox.append(ctpg_textbox_curr)
if Obj_and_Topics is not None:
ad_obj_curr, ctpg_obj_curr, ad_topic_curr, ctpg_topic_curr = Obj_and_Topics[i]
ad_num_obj.append(ad_obj_curr); ctpg_num_obj.append(ctpg_obj_curr)
ad_topic_weight.append(ad_topic_curr); ctpg_topic_weight.append(ctpg_topic_curr)
Ad_Attention_Preference = np.zeros((len(Ads),len(Counterpages)))
Brand_Attention_Preference = np.zeros((len(Ads),len(Counterpages)))
for i, ad in enumerate(Ads):
print('Ad '+str(i)+" Assigning...")
if Method == 'CNN':
ad_images_stack = []
ctpg_images_stack = []
ad_locations_stack = []
for j, ctpg in enumerate(Counterpages):
# if ad_locations[j] == 0:
# new_image = np.concatenate((ad,ctpg),axis=1)
# else:
# new_image = np.concatenate((ctpg,ad),axis=1)
if Textboxes is not None:
textboxes_curr = [ad_textbox[i],ctpg_textbox[j]]
else:
textboxes_curr = None
if Obj_and_Topics is not None:
obj_and_topics_curr = [ad_num_obj[i],ctpg_num_obj[j],ad_topic_weight[i],ctpg_topic_weight[j]]
else:
obj_and_topics_curr = None
if Method == 'XGBoost':
ad_attention = Predict.Ad_Gaze_Prediction(input_ad_path=ad, input_ctpg_path=ctpg,
text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth,
training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path,
training_language='dutch', ad_embeddings=ad_embeds[i].reshape(1,768), ctpg_embeddings=ctpg_embeds[i].reshape(1,768),
surface_sizes=list(ad_elements[i]), Product_Group=list(prod_groups[i]), TextBoxes=textboxes_curr, Obj_and_Topics=obj_and_topics_curr,
obj_detection_model_pth=None, ad_location=ad_locations[j], num_topic=20, Gaze_Time_Type='Ad', Info_printing=False)
brand_attention = Predict.Ad_Gaze_Prediction(input_ad_path=ad, input_ctpg_path=ctpg,
text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth,
training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path,
training_language='dutch', ad_embeddings=ad_embeds[i].reshape(1,768), ctpg_embeddings=ctpg_embeds[i].reshape(1,768),
surface_sizes=list(ad_elements[i]), Product_Group=list(prod_groups[i]), TextBoxes=textboxes_curr, Obj_and_Topics=obj_and_topics_curr,
obj_detection_model_pth=None, ad_location=ad_locations[j], num_topic=20, Gaze_Time_Type='Brand', Info_printing=False)
Ad_Attention_Preference[i,j] = ad_attention/Costs_Ctpg[j]
Brand_Attention_Preference[i,j] = brand_attention/Costs_Ctpg[j]
elif Method == 'CNN':
ad_img_CNN = torch.tensor(ad).permute(2,0,1).unsqueeze(0)[:,:,89:921,:]
ad_images_stack.append(ad_img_CNN)
ctpg_img_CNN = torch.tensor(ctpg).permute(2,0,1).unsqueeze(0)[:,:,89:921,:]
ctpg_images_stack.append(ctpg_img_CNN)
ad_locations_stack.append(torch.tensor([[1,0]]))
# ad_attention = Predict.CNN_Prediction(ad_img_CNN, ctpg_img_CNN, ad_location, Gaze_Type='AG').item()
# brand_attention = Predict.CNN_Prediction(ad_img_CNN, ctpg_img_CNN, ad_location, Gaze_Type='BG').item()
if Method == 'CNN':
ad_images_stack = torch.cat(ad_images_stack,dim=0)
ctpg_images_stack = torch.cat(ctpg_images_stack,dim=0)
ad_locations_stack = torch.cat(ad_locations_stack,dim=0)
ad_attentions = Predict.CNN_Prediction(ad_images_stack, ctpg_images_stack, ad_locations_stack, Gaze_Type='AG').to('cpu').squeeze()
brand_attentions = Predict.CNN_Prediction(ad_images_stack, ctpg_images_stack, ad_locations_stack, Gaze_Type='BG').to('cpu').squeeze()
Ad_Attention_Preference[i] = ad_attentions.numpy()/np.array(Costs_Ctpg)
Brand_Attention_Preference[i] = brand_attentions.numpy()/np.array(Costs_Ctpg)
return Ad_Attention_Preference, Brand_Attention_Preference, double_page_ad_attention, double_page_brand_attention, Assign_ids
def Preference_Matrix_different_magazine(Magzine_Target, Magzine_Ad,
Magazine_Slots_Target, Magazine_Slots_Ad,
Ad_Groups, Ad_Element_Sizes,
Textboxes_Target=None, Textboxes_Ad=None,
Obj_and_Topics_Target=None, Obj_and_Topics_Ad=None,
Costs=None):
#Separate Images into Ads and Counterpage
Ads = []
Counterpages = []
Assign_ids_target = []
Assign_ids_ad = []
ad_locations = []
prod_groups = []
ad_elements = []
if Textboxes_Target is not None:
ad_textbox = []; ctpg_textbox = []
if Obj_and_Topics_Target is not None:
ad_num_obj = []; ctpg_num_obj = []
ad_topic_weight = []; ctpg_topic_weight = []
double_page_ad_attention = []
double_page_brand_attention = []
#Target magazine (Counterpage)
for i, path in enumerate(Magzine_Target):
if Magazine_Slots_Target[i] == 2:
continue
else:
Assign_ids_target.append(i)
img_curr = cv.imread(path)
img_curr = cv.resize(img_curr, (1280,1024))
_, w, _ = img_curr.shape
page_width = w // 2
ad_locations.append(Magazine_Slots_Target[i])
ctpg_location = 1-Magazine_Slots_Target[i]
ctpg_img = img_curr[:, (ctpg_location*page_width):((ctpg_location+1)*page_width)]
Counterpages.append(ctpg_img)
if Textboxes_Target is not None:
_, ctpg_textbox_curr = Textboxes_Target[i]
ctpg_textbox.append(ctpg_textbox_curr)
if Obj_and_Topics_Target is not None:
_, ctpg_obj_curr, _, ctpg_topic_curr = Obj_and_Topics_Target[i]
ctpg_num_obj.append(ctpg_obj_curr)
ctpg_topic_weight.append(ctpg_topic_curr)
#Ad magazine (Ads)
for i, path in enumerate(Magzine_Ad):
if Magazine_Slots_Ad[i] == 2:
if Textboxes_Ad is None:
textboxes_curr = None
else:
textboxes_curr = Textboxes_Ad[i]
if Obj_and_Topics_Ad is None:
obj_and_topics_curr = None
else:
obj_and_topics_curr = Obj_and_Topics_Ad[i]
ad_attention = Predict.Ad_Gaze_Prediction(input_ad_path=path, input_ctpg_path=None, text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth,
training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path, training_language='dutch',
surface_sizes=list(Ad_Element_Sizes[i]), Product_Group=list(Ad_Groups[i]), TextBoxes=textboxes_curr, Obj_and_Topics=obj_and_topics_curr,
obj_detection_model_pth=None, ad_location=None, num_topic=20, Gaze_Time_Type='Ad', Info_printing=False)
brand_attention = Predict.Ad_Gaze_Prediction(input_ad_path=path, input_ctpg_path=None, text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth,
training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path, training_language='dutch',
surface_sizes=list(Ad_Element_Sizes[i]), Product_Group=list(Ad_Groups[i]), TextBoxes=textboxes_curr, Obj_and_Topics=obj_and_topics_curr,
obj_detection_model_pth=None, ad_location=None, num_topic=20, Gaze_Time_Type='Brand', Info_printing=False)
double_page_ad_attention.append(ad_attention)
double_page_brand_attention.append(brand_attention)
else:
Assign_ids_ad.append(i)
img_curr = cv.imread(path)
img_curr = cv.resize(img_curr, (1280,1024))
_, w, _ = img_curr.shape
page_width = w // 2
ad_img = img_curr[:, (Magazine_Slots_Ad[i]*page_width):((Magazine_Slots_Ad[i]+1)*page_width)]
Ads.append(ad_img)
prod_groups.append(Ad_Groups[i])
ad_elements.append(Ad_Element_Sizes[i])
if Textboxes_Ad is not None:
ad_textbox_curr, _ = Textboxes_Ad[i]
ad_textbox.append(ad_textbox_curr)
if Obj_and_Topics_Ad is not None:
ad_obj_curr, _, ad_topic_curr, _ = Obj_and_Topics_Ad[i]
ad_num_obj.append(ad_obj_curr)
ad_topic_weight.append(ad_topic_curr)
#Check costs on Ad position
if Costs is None:
Costs = np.ones(len(Counterpages))
#Matrix
if len(Ads) > len(Counterpages):
return None
else:
Ad_Attention_Preference = np.zeros((len(Ads),len(Counterpages)))
Brand_Attention_Preference = np.zeros((len(Ads),len(Counterpages)))
for i, ad in enumerate(Ads):
print('Ad '+str(i)+" Assigning...")
for j, ctpg in enumerate(Counterpages):
# if ad_locations[j] == 0:
# new_image = np.concatenate((ad,ctpg),axis=1)
# else:
# new_image = np.concatenate((ctpg,ad),axis=1)
if Textboxes_Target is not None:
textboxes_curr = [ad_textbox[i],ctpg_textbox[j]]
else:
textboxes_curr = None
if Obj_and_Topics_Target is not None:
obj_and_topics_curr = [ad_num_obj[i],ctpg_num_obj[j],ad_topic_weight[i],ctpg_topic_weight[j]]
else:
obj_and_topics_curr = None
ad_attention = Predict.Ad_Gaze_Prediction(input_ad_path=ad, input_ctpg_path=ctpg, text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth,
training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path, training_language='dutch',
surface_sizes=list(ad_elements[i]), Product_Group=list(prod_groups[i]), TextBoxes=textboxes_curr, Obj_and_Topics=obj_and_topics_curr,
obj_detection_model_pth=None, ad_location=ad_locations[j], num_topic=20, Gaze_Time_Type='Ad', Info_printing=False)
brand_attention = Predict.Ad_Gaze_Prediction(input_ad_path=ad, input_ctpg_path=ctpg, text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth,
training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path, training_language='dutch',
surface_sizes=list(ad_elements[i]), Product_Group=list(prod_groups[i]), TextBoxes=textboxes_curr, Obj_and_Topics=obj_and_topics_curr,
obj_detection_model_pth=None, ad_location=ad_locations[j], num_topic=20, Gaze_Time_Type='Brand', Info_printing=False)
Ad_Attention_Preference[i,j] = ad_attention/Costs[j]
Brand_Attention_Preference[i,j] = brand_attention/Costs[j]
return Ad_Attention_Preference, Brand_Attention_Preference, double_page_ad_attention, double_page_brand_attention, Assign_ids_ad, Assign_ids_target
def Assignment_Problem(costs, workers, jobs):
#https://machinelearninggeek.com/solving-assignment-problem-using-linear-programming-in-python/
prob = LpProblem("Assignment Problem", LpMinimize)
# The cost data is made into a dictionary
costs= makeDict([workers, jobs], costs, 0)
# Creates a list of tuples containing all the possible assignments
assign = [(w, j) for w in workers for j in jobs]
# A dictionary called 'Vars' is created to contain the referenced variables
vars = LpVariable.dicts("Assign", (workers, jobs), 0, None, LpBinary)
# The objective function is added to 'prob' first
prob += (
lpSum([vars[w][j] * costs[w][j] for (w, j) in assign]),
"Sum_of_Assignment_Costs",
)
# There are row constraints. Each job can be assigned to only one employee.
for j in jobs:
prob+= lpSum(vars[w][j] for w in workers) == 1
# There are column constraints. Each employee can be assigned to only one job.
for w in workers:
prob+= lpSum(vars[w][j] for j in jobs) == 1
# The problem is solved using PuLP's choice of Solver
prob.solve()
return prob