Demo750's picture
Upload folder using huggingface_hub
569f484 verified
raw
history blame
6.69 kB
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
import random
import math
import numpy as np
Image.MAX_IMAGE_PIXELS = 1000000000
max_token = {
'docVQA': 100,
'textVQA': 100,
"docVQATest": 100
}
class MiniCPM_V:
def __init__(self, model_path, ckpt, device=None)->None:
self.model_path = model_path
self.ckpt = ckpt
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True).eval()
if self.ckpt is not None:
self.ckpt = ckpt
self.state_dict = torch.load(self.ckpt, map_location=torch.device('cpu'))
self.model.load_state_dict(self.state_dict)
self.model = self.model.to(dtype=torch.float16)
self.model.to(device)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
torch.cuda.empty_cache()
def generate(self, images, questions, datasetname):
image = Image.open(images[0]).convert('RGB')
try:
max_new_tokens = max_token[datasetname]
except:
max_new_tokens = 1024
if (datasetname == 'docVQA') or (datasetname == "docVQATest") :
prompt = "Answer the question directly with single word." + "\n" + questions[0]
elif (datasetname == 'textVQA') :
prompt = "Answer the question directly with single word." + '\n'+ questions[0]
msgs = [{'role': 'user', 'content': prompt}]
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=3
)
res = self.model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
**default_kwargs
)
return [res]
def generate_with_interleaved(self, images, questions, datasetname):
try:
max_new_tokens = max_token[datasetname]
except:
max_new_tokens = 1024
prompt = "Answer the question directly with single word."
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=3
)
content = []
message = [
{'type': 'text', 'value': prompt},
{'type': 'image', 'value': images[0]},
{'type': 'text', 'value': questions[0]}
]
for x in message:
if x['type'] == 'text':
content.append(x['value'])
elif x['type'] == 'image':
image = Image.open(x['value']).convert('RGB')
content.append(image)
msgs = [{'role': 'user', 'content': content}]
res = self.model.chat(
image=None,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
**default_kwargs
)
if isinstance(res, tuple) and len(res) > 0:
res = res[0]
print(f"Q: {content}, \nA: {res}")
return [res]
class MiniCPM_V_2_6:
def __init__(self, model_path, ckpt, device=None)->None:
seed = 0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
self.model_path = model_path
self.ckpt = ckpt
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True).eval()
if self.ckpt is not None:
self.ckpt = ckpt
self.state_dict = torch.load(self.ckpt, map_location=torch.device('cpu'))
self.model.load_state_dict(self.state_dict)
self.model = self.model.to(dtype=torch.bfloat16)
self.model.to(device)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
torch.cuda.empty_cache()
def generate(self, images, questions, datasetname):
image = Image.open(images[0]).convert('RGB')
try:
max_new_tokens = max_token[datasetname]
except:
max_new_tokens = 1024
if (datasetname == 'docVQA') or (datasetname == "docVQATest") :
prompt = "Answer the question directly with single word." + "\n" + questions[0]
elif (datasetname == 'textVQA') :
prompt = "Answer the question directly with single word." + '\n'+ questions[0]
msgs = [{'role': 'user', 'content': prompt}]
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=3
)
res = self.model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
**default_kwargs
)
return [res]
def generate_with_interleaved(self, images, questions, datasetname):
try:
max_new_tokens = max_token[datasetname]
except:
max_new_tokens = 1024
prompt = "Answer the question directly with single word."
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=3
)
content = []
message = [
{'type': 'text', 'value': prompt},
{'type': 'image', 'value': images[0]},
{'type': 'text', 'value': questions[0]}
]
for x in message:
if x['type'] == 'text':
content.append(x['value'])
elif x['type'] == 'image':
image = Image.open(x['value']).convert('RGB')
img_width, img_height = image.width, image.height
if (img_width * img_height) >= (1344 * 1344):
content.append(image)
else:
ratio = math.sqrt((1344 * 1344) / (img_width * img_height))
max_img_width = int(img_width * ratio)
new_img_width = random.randint(img_width, max_img_width)
new_img_height = int(new_img_width / img_width * img_height)
resized_image = image.resize((new_img_width, new_img_height))
content.append(resized_image)
msgs = [{'role': 'user', 'content': content}]
res = self.model.chat(
image=None,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
**default_kwargs
)
if isinstance(res, tuple) and len(res) > 0:
res = res[0]
print(f"Q: {content}, \nA: {res}")
return [res]