Demo750's picture
Upload folder using huggingface_hub
569f484 verified
raw
history blame
10.4 kB
import time
import random as rd
from abc import abstractmethod
import os.path as osp
import copy as cp
from ..smp import get_logger, parse_file, concat_images_vlmeval
class BaseAPI:
allowed_types = ['text', 'image']
INTERLEAVE = True
INSTALL_REQ = False
def __init__(self,
retry=10,
wait=3,
system_prompt=None,
verbose=True,
fail_msg='Failed to obtain answer via API.',
**kwargs):
"""Base Class for all APIs.
Args:
retry (int, optional): The retry times for `generate_inner`. Defaults to 10.
wait (int, optional): The wait time after each failed retry of `generate_inner`. Defaults to 3.
system_prompt (str, optional): Defaults to None.
verbose (bool, optional): Defaults to True.
fail_msg (str, optional): The message to return when failed to obtain answer.
Defaults to 'Failed to obtain answer via API.'.
**kwargs: Other kwargs for `generate_inner`.
"""
self.wait = wait
self.retry = retry
self.system_prompt = system_prompt
self.verbose = verbose
self.fail_msg = fail_msg
self.logger = get_logger('ChatAPI')
if len(kwargs):
self.logger.info(f'BaseAPI received the following kwargs: {kwargs}')
self.logger.info('Will try to use them as kwargs for `generate`. ')
self.default_kwargs = kwargs
@abstractmethod
def generate_inner(self, inputs, **kwargs):
"""The inner function to generate the answer.
Returns:
tuple(int, str, str): ret_code, response, log
"""
self.logger.warning('For APIBase, generate_inner is an abstract method. ')
assert 0, 'generate_inner not defined'
ret_code, answer, log = None, None, None
# if ret_code is 0, means succeed
return ret_code, answer, log
def working(self):
"""If the API model is working, return True, else return False.
Returns:
bool: If the API model is working, return True, else return False.
"""
self.old_timeout = None
if hasattr(self, 'timeout'):
self.old_timeout = self.timeout
self.timeout = 120
retry = 5
while retry > 0:
ret = self.generate('hello')
if ret is not None and ret != '' and self.fail_msg not in ret:
if self.old_timeout is not None:
self.timeout = self.old_timeout
return True
retry -= 1
if self.old_timeout is not None:
self.timeout = self.old_timeout
return False
def check_content(self, msgs):
"""Check the content type of the input. Four types are allowed: str, dict, liststr, listdict.
Args:
msgs: Raw input messages.
Returns:
str: The message type.
"""
if isinstance(msgs, str):
return 'str'
if isinstance(msgs, dict):
return 'dict'
if isinstance(msgs, list):
types = [self.check_content(m) for m in msgs]
if all(t == 'str' for t in types):
return 'liststr'
if all(t == 'dict' for t in types):
return 'listdict'
return 'unknown'
def preproc_content(self, inputs):
"""Convert the raw input messages to a list of dicts.
Args:
inputs: raw input messages.
Returns:
list(dict): The preprocessed input messages. Will return None if failed to preprocess the input.
"""
if self.check_content(inputs) == 'str':
return [dict(type='text', value=inputs)]
elif self.check_content(inputs) == 'dict':
assert 'type' in inputs and 'value' in inputs
return [inputs]
elif self.check_content(inputs) == 'liststr':
res = []
for s in inputs:
mime, pth = parse_file(s)
if mime is None or mime == 'unknown':
res.append(dict(type='text', value=s))
else:
res.append(dict(type=mime.split('/')[0], value=pth))
return res
elif self.check_content(inputs) == 'listdict':
for item in inputs:
assert 'type' in item and 'value' in item
mime, s = parse_file(item['value'])
if mime is None:
assert item['type'] == 'text', item['value']
else:
assert mime.split('/')[0] == item['type']
item['value'] = s
return inputs
else:
return None
# May exceed the context windows size, so try with different turn numbers.
def chat_inner(self, inputs, **kwargs):
_ = kwargs.pop('dataset', None)
while len(inputs):
try:
return self.generate_inner(inputs, **kwargs)
except:
inputs = inputs[1:]
while len(inputs) and inputs[0]['role'] != 'user':
inputs = inputs[1:]
continue
return -1, self.fail_msg + ': ' + 'Failed with all possible conversation turns.', None
def chat(self, messages, **kwargs1):
"""The main function for multi-turn chatting. Will call `chat_inner` with the preprocessed input messages."""
assert hasattr(self, 'chat_inner'), 'The API model should has the `chat_inner` method. '
for msg in messages:
assert isinstance(msg, dict) and 'role' in msg and 'content' in msg, msg
assert self.check_content(msg['content']) in ['str', 'dict', 'liststr', 'listdict'], msg
msg['content'] = self.preproc_content(msg['content'])
# merge kwargs
kwargs = cp.deepcopy(self.default_kwargs)
kwargs.update(kwargs1)
answer = None
# a very small random delay [0s - 0.5s]
T = rd.random() * 0.5
time.sleep(T)
assert messages[-1]['role'] == 'user'
for i in range(self.retry):
try:
ret_code, answer, log = self.chat_inner(messages, **kwargs)
if ret_code == 0 and self.fail_msg not in answer and answer != '':
if self.verbose:
print(answer)
return answer
elif self.verbose:
if not isinstance(log, str):
try:
log = log.text
except:
self.logger.warning(f'Failed to parse {log} as an http response. ')
self.logger.info(f'RetCode: {ret_code}\nAnswer: {answer}\nLog: {log}')
except Exception as err:
if self.verbose:
self.logger.error(f'An error occured during try {i}:')
self.logger.error(err)
# delay before each retry
T = rd.random() * self.wait * 2
time.sleep(T)
return self.fail_msg if answer in ['', None] else answer
def generate(self, message, **kwargs1):
"""The main function to generate the answer. Will call `generate_inner` with the preprocessed input messages.
Args:
message: raw input messages.
Returns:
str: The generated answer of the Failed Message if failed to obtain answer.
"""
assert self.check_content(message) in ['str', 'dict', 'liststr', 'listdict'], f'Invalid input type: {message}'
message = self.preproc_content(message)
assert message is not None and self.check_content(message) == 'listdict'
for item in message:
assert item['type'] in self.allowed_types, f'Invalid input type: {item["type"]}'
# merge kwargs
kwargs = cp.deepcopy(self.default_kwargs)
kwargs.update(kwargs1)
answer = None
# a very small random delay [0s - 0.5s]
T = rd.random() * 0.5
time.sleep(T)
for i in range(self.retry):
try:
ret_code, answer, log = self.generate_inner(message, **kwargs)
if ret_code == 0 and self.fail_msg not in answer and answer != '':
if self.verbose:
print(answer)
return answer
elif self.verbose:
if not isinstance(log, str):
try:
log = log.text
except:
self.logger.warning(f'Failed to parse {log} as an http response. ')
self.logger.info(f'RetCode: {ret_code}\nAnswer: {answer}\nLog: {log}')
except Exception as err:
if self.verbose:
self.logger.error(f'An error occured during try {i}:')
self.logger.error(err)
# delay before each retry
T = rd.random() * self.wait * 2
time.sleep(T)
return self.fail_msg if answer in ['', None] else answer
def message_to_promptimg(self, message, dataset=None):
assert not self.INTERLEAVE
model_name = self.__class__.__name__
import warnings
warnings.warn(
f'Model {model_name} does not support interleaved input. '
'Will use the first image and aggregated texts as prompt. ')
num_images = len([x for x in message if x['type'] == 'image'])
if num_images == 0:
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
image = None
elif num_images == 1:
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
image = [x['value'] for x in message if x['type'] == 'image'][0]
else:
prompt = '\n'.join([x['value'] if x['type'] == 'text' else '<image>' for x in message])
if dataset == 'BLINK':
image = concat_images_vlmeval(
[x['value'] for x in message if x['type'] == 'image'],
target_size=512)
else:
image = [x['value'] for x in message if x['type'] == 'image'][0]
return prompt, image