Spaces:
Running
Running
import math | |
import torch | |
import random | |
import numpy as np | |
from PIL import Image | |
from transformers import AutoModel, AutoTokenizer | |
from .base import BaseModel | |
from ..smp import * | |
from ..dataset import DATASET_TYPE | |
class MiniCPM_V(BaseModel): | |
INSTALL_REQ = False | |
INTERLEAVE = False | |
def __init__(self, model_path='openbmb/MiniCPM-V', **kwargs): | |
assert model_path is not None | |
self.model_path = model_path | |
print(f'load from {self.model_path}') | |
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True) | |
self.model = self.model.to(dtype=torch.bfloat16) | |
self.model.eval().cuda() | |
self.kwargs = kwargs | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True) | |
torch.cuda.empty_cache() | |
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3 | |
def use_custom_prompt(self, dataset): | |
assert dataset is not None | |
if listinstr(['MMMU'], dataset): | |
return True | |
return False | |
def build_prompt(self, line, dataset=None): | |
assert dataset is None or isinstance(dataset, str) | |
assert self.use_custom_prompt(dataset) | |
tgt_path = self.dump_image(line, dataset) | |
question = line['question'] | |
options = { | |
cand: line[cand] | |
for cand in string.ascii_uppercase | |
if cand in line and not pd.isna(line[cand]) | |
} | |
options_prompt = 'Options:\n' | |
for key, item in options.items(): | |
options_prompt += f'{key}. {item}\n' | |
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None | |
prompt = '' | |
if hint is not None: | |
prompt += f'Hint: {hint}\n' | |
prompt += f'{question}\n' | |
if len(options): | |
prompt += options_prompt | |
prompt = 'Study the image carefully and pick the option associated with the correct answer. \ | |
Focus solely on selecting the option and avoid including any other content.\n' + prompt | |
message = [dict(type='text', value=prompt)] | |
message.extend([dict(type='image', value=p) for p in tgt_path]) | |
return message | |
def generate_inner(self, message, dataset=None): | |
prompt, image_path = self.message_to_promptimg(message, dataset=dataset) | |
image = Image.open(image_path).convert('RGB') | |
msgs = [{'role': 'user', 'content': prompt}] | |
if DATASET_TYPE(dataset) == 'MCQ': | |
max_new_tokens = 20 | |
elif DATASET_TYPE(dataset) == 'Y/N': | |
max_new_tokens = 100 | |
else: | |
max_new_tokens = 1024 | |
default_kwargs = dict( | |
max_new_tokens=max_new_tokens, | |
sampling=False, | |
num_beams=self.num_beams | |
) | |
default_kwargs.update(self.kwargs) | |
res, _, _ = self.model.chat( | |
image=image, | |
msgs=msgs, | |
context=None, | |
tokenizer=self.tokenizer, | |
**default_kwargs | |
) | |
return res | |
class MiniCPM_Llama3_V(BaseModel): | |
INSTALL_REQ = False | |
INTERLEAVE = True | |
def __init__(self, model_path='openbmb/MiniCPM-Llama3-V-2_5', **kwargs): | |
assert model_path is not None | |
self.model_path = model_path | |
print(f'load from {self.model_path}') | |
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True) | |
self.model = self.model.to(dtype=torch.float16) | |
self.model.eval().cuda() | |
self.kwargs = kwargs | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True) | |
torch.cuda.empty_cache() | |
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3 | |
self.options_system_prompt = ('Carefully read the following question and select the letter corresponding ' | |
'to the correct answer. Highlight the applicable choices without giving ' | |
'explanations.') | |
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly.' | |
self.detail_system_prompt = 'Answer this question in detail.' | |
self.vqa_prompt = 'Answer the question using a single word or phrase.' | |
def use_custom_prompt(self, dataset): | |
if listinstr(['MCQ', 'VQA'], DATASET_TYPE(dataset)): | |
return True | |
elif dataset is not None and listinstr(['HallusionBench'], dataset): | |
return True | |
return False | |
def build_prompt(self, line, dataset=None): | |
if isinstance(line, int): | |
line = self.data.iloc[line] | |
tgt_path = self.dump_image(line, dataset) | |
system_prompt = '' | |
question = line['question'] | |
if DATASET_TYPE(dataset) == 'MCQ': | |
options = { | |
cand: line[cand] | |
for cand in string.ascii_uppercase | |
if cand in line and not pd.isna(line[cand]) | |
} | |
options_prompt = 'Options:\n' | |
for key, item in options.items(): | |
options_prompt += f'{key}. {item}\n' | |
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None | |
prompt = '' | |
if hint is not None: | |
prompt += f'Hint: {hint}\n' | |
prompt += f'Question: {question}\n' | |
if len(options): | |
prompt += options_prompt | |
system_prompt = self.options_system_prompt + '\nPlease just indicate your choice.' | |
else: | |
system_prompt = self.wo_options_system_prompt | |
if 'MMMU' in dataset: # Corner Case | |
prompt = system_prompt + '\n' + prompt | |
system_prompt = '' | |
elif dataset is not None and listinstr(['HallusionBench'], dataset): | |
question = line['question'] + ' Yes or No?' | |
prompt = question | |
elif dataset is not None and listinstr(['MME'], dataset): | |
question = line['question'] + ' Yes or No?' | |
prompt = question | |
elif dataset is not None and listinstr(['OCRBench'], dataset): | |
system_prompt = self.vqa_prompt | |
question = line['question'] | |
prompt = question | |
elif DATASET_TYPE(dataset) == 'VQA': | |
if listinstr(['LLaVABench', 'MMLongBench_DOC'], dataset): | |
system_prompt = '' | |
prompt = question | |
elif listinstr(['MMVet'], dataset): | |
system_prompt = self.detail_system_prompt | |
prompt = question | |
else: | |
system_prompt = self.vqa_prompt | |
prompt = question | |
msgs = [] | |
if system_prompt: | |
msgs.append(dict(type='text', value=system_prompt)) | |
if isinstance(tgt_path, list): | |
msgs.extend([dict(type='image', value=p) for p in tgt_path]) | |
else: | |
msgs = [dict(type='image', value=tgt_path)] | |
msgs.append(dict(type='text', value=prompt)) | |
return msgs | |
def generate_inner(self, message, dataset=None): | |
if DATASET_TYPE(dataset) == 'MCQ': | |
max_new_tokens = 200 | |
elif DATASET_TYPE(dataset) == 'Y/N': | |
max_new_tokens = 3 | |
else: | |
max_new_tokens = 1024 | |
default_kwargs = dict( | |
max_new_tokens=max_new_tokens, | |
sampling=False, | |
num_beams=self.num_beams, | |
) | |
default_kwargs.update(self.kwargs) | |
content = [] | |
for x in message: | |
if x['type'] == 'text': | |
content.append(x['value']) | |
elif x['type'] == 'image': | |
image = Image.open(x['value']).convert('RGB') | |
content.append(image) | |
msgs = [{'role': 'user', 'content': content}] | |
res = self.model.chat( | |
msgs=msgs, | |
context=None, | |
image=None, | |
tokenizer=self.tokenizer, | |
**default_kwargs | |
) | |
if isinstance(res, tuple) and len(res) > 0: | |
res = res[0] | |
return res | |
def chat_inner(self, message, dataset=None): | |
max_new_tokens = 1024 | |
default_kwargs = dict( | |
max_new_tokens=max_new_tokens, | |
sampling=False, | |
num_beams=self.num_beams, | |
) | |
default_kwargs.update(self.kwargs) | |
msgs = [] | |
for msg in message: | |
content = [] | |
if len(msg['content']) == 1 and msg['content'][0]['type'] == 'text': | |
msg_new = {'role': msg['role'], 'content': msg['content'][0]['value']} | |
msgs.append(msg_new) | |
continue | |
for x in msg['content']: | |
if x['type'] == 'text': | |
content.append(x['value']) | |
elif x['type'] == 'image': | |
image = Image.open(x['value']).convert('RGB') | |
content.append(image) | |
msg_new = {'role': msg['role'], 'content': content} | |
msgs.append(msg_new) | |
res = self.model.chat( | |
msgs=msgs, | |
context=None, | |
image=None, | |
tokenizer=self.tokenizer, | |
**default_kwargs) | |
if isinstance(res, tuple) and len(res) > 0: | |
res = res[0] | |
return res | |
class MiniCPM_V_2_6(BaseModel): | |
INSTALL_REQ = False | |
INTERLEAVE = True | |
def __init__(self, model_path='openbmb/MiniCPM-V', **kwargs): | |
random.seed(0) | |
np.random.seed(0) | |
torch.manual_seed(0) | |
torch.cuda.manual_seed_all(0) | |
assert model_path is not None | |
self.model_path = model_path | |
print(f'load from path {self.model_path}') | |
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True) | |
self.model = self.model.to(dtype=torch.bfloat16) | |
self.model.eval().cuda() | |
self.kwargs = kwargs | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True) | |
torch.cuda.empty_cache() | |
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3 | |
self.options_suffix_prompt = '''\nAnswer with the option's letter from the given choices directly.''' | |
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly.' | |
self.detail_system_prompt = 'Answer this question in detail.' | |
self.vqa_prompt = 'Answer the question using a single word or phrase.' | |
self.multi_choice_cot_prompt = ('''Carefully read the following multichoice question, solve it step ''' | |
'''by step and finally pick the option associated with the correct ''' | |
'''answer in the format of "Answer: selected option\n\n''') | |
self.short_ans_cot_prompt = ('''Read the following question carefully, solve it step by step, and ''' | |
'''then output the final answer in the format of "Answer: single number ''' | |
'''or single word or phrase".\n\n''') | |
def use_custom_prompt(self, dataset=None): | |
if dataset is None: | |
return False | |
if listinstr(['MCQ', 'VQA', 'Y/N'], DATASET_TYPE(dataset)): | |
return True | |
return False | |
def use_cot(self, dataset=None): | |
if dataset is None: | |
return False | |
if listinstr(['MMMU', 'HallusionBench', 'OCRBench', 'ChartQA'], dataset): | |
return True | |
elif listinstr(['MathVista', 'MMVet', 'MMBench', 'MMStar', 'AI2D', 'RealWorldQA', | |
'POPE', 'ScienceQA', 'TextVQA', 'DocVQA'], dataset): | |
return False | |
else: | |
return False | |
def use_upsize(self, dataset=None): | |
if dataset is None: | |
return False | |
if listinstr(['MMVet', 'MMBench', 'MMStar', 'AI2D', 'OCRBench'], dataset): | |
return True | |
else: | |
return False | |
def build_prompt(self, line, dataset=None): | |
if isinstance(line, int): | |
line = self.data.iloc[line] | |
tgt_path = self.dump_image(line, dataset) | |
system_prompt, prompt = '', '' | |
question = line['question'] | |
if not self.use_cot(dataset): | |
if DATASET_TYPE(dataset) == 'MCQ': | |
options = { | |
cand: line[cand] | |
for cand in string.ascii_uppercase | |
if cand in line and not pd.isna(line[cand]) | |
} | |
options_prompt = 'Options:\n' | |
for key, item in options.items(): | |
options_prompt += f'{key}. {item}\n' | |
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None | |
if hint is not None: | |
prompt += f'Hint: {hint}\n' | |
prompt += f'Question: {question}\n' | |
if len(options): | |
prompt += options_prompt | |
prompt += self.options_suffix_prompt | |
else: | |
system_prompt = self.wo_options_system_prompt | |
if 'MMMU' in dataset: | |
if len(system_prompt) > 0: | |
prompt = system_prompt + '\n' + prompt | |
system_prompt = '' | |
elif dataset is not None and listinstr(['HallusionBench'], dataset): | |
question += ' Yes or No?' | |
prompt = question | |
elif dataset is not None and listinstr(['OCRBench'], dataset): | |
system_prompt = self.vqa_prompt | |
prompt = question | |
elif DATASET_TYPE(dataset) == 'VQA': | |
if listinstr(['LLaVABench'], dataset): | |
system_prompt = '' | |
elif listinstr(['MMVet'], dataset): | |
system_prompt = self.detail_system_prompt | |
else: | |
system_prompt = self.vqa_prompt | |
prompt = question | |
else: | |
prompt = question | |
else: | |
has_options = True | |
if DATASET_TYPE(dataset) == 'MCQ': | |
options = { | |
cand: line[cand] | |
for cand in string.ascii_uppercase | |
if cand in line and not pd.isna(line[cand]) | |
} | |
options_prompt = '' | |
for key, item in options.items(): | |
options_prompt += f'{key}. {item}\n' | |
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None | |
if hint is not None: | |
prompt += f'Hint: {hint}\n' | |
prompt += f'{question}\n' | |
if len(options): | |
prompt += options_prompt | |
else: | |
has_options = False | |
if 'MMMU' in dataset: | |
if len(system_prompt) > 0: | |
prompt = system_prompt + '\n' + prompt | |
system_prompt = '' | |
else: | |
prompt = question | |
if DATASET_TYPE(dataset) in ['MCQ', 'Y/N', 'VQA']: | |
if DATASET_TYPE(dataset) == 'MCQ': | |
if has_options: | |
prompt = self.multi_choice_cot_prompt + prompt | |
else: | |
prompt = self.short_ans_cot_prompt + prompt | |
elif DATASET_TYPE(dataset) == 'Y/N': | |
prompt = self.short_ans_cot_prompt + prompt | |
else: | |
prompt = self.short_ans_cot_prompt + prompt | |
msgs = [] | |
if system_prompt: | |
msgs.append(dict(type='text', value=system_prompt)) | |
if isinstance(tgt_path, list): | |
msgs.extend([dict(type='image', value=p) for p in tgt_path]) | |
else: | |
msgs = [dict(type='image', value=tgt_path)] | |
msgs.append(dict(type='text', value=prompt)) | |
return msgs | |
def generate_inner(self, message, dataset=None): | |
max_new_tokens = 2048 | |
default_kwargs = dict( | |
max_new_tokens=max_new_tokens, | |
sampling=False, | |
num_beams=self.num_beams, | |
) | |
default_kwargs.update(self.kwargs) | |
content = [] | |
for x in message: | |
if x['type'] == 'text': | |
content.append(x['value']) | |
elif x['type'] == 'image': | |
image = Image.open(x['value']).convert('RGB') | |
if not self.use_upsize(dataset): | |
content.append(image) | |
else: | |
img_width, img_height = image.width, image.height | |
if (img_width * img_height) >= (1344 * 1344): | |
content.append(image) | |
else: | |
ratio = math.sqrt((1344 * 1344) / (img_width * img_height)) | |
max_img_width = int(img_width * ratio) | |
new_img_width = random.randint(img_width, max_img_width) | |
new_img_height = int(new_img_width / img_width * img_height) | |
resized_image = image.resize((new_img_width, new_img_height)) | |
content.append(resized_image) | |
msgs = [{'role': 'user', 'content': content}] | |
res = self.model.chat( | |
image=None, | |
msgs=msgs, | |
context=None, | |
tokenizer=self.tokenizer, | |
max_inp_length=8192, | |
**default_kwargs | |
) | |
if isinstance(res, tuple) and len(res) > 0: | |
res = res[0] | |
return res | |