Spaces:
Running
Running
import sys | |
import datetime | |
import json | |
import os | |
import torch | |
script_dir = os.path.dirname(os.path.realpath(__file__)) | |
sys.path.append(os.path.join(script_dir, '..')) | |
from datasets.vqa_dataset import docVQADataset, docVQATESTDataset, textVQADataset | |
print(torch.__version__) | |
import numpy as np | |
from eval_utils.getargs import parse_args | |
from eval_utils.vqa_evaluate import * | |
def get_model(args): | |
if args.model_name == '': | |
raise Exception('Model name cannot be empty str!') | |
from models.MiniCPM.minicpmv import MiniCPM_V, MiniCPM_V_2_6 | |
model_path = args.model_path | |
ckpt = args.ckpt | |
if args.model_name == 'minicpmv': | |
model = MiniCPM_V(model_path=model_path, ckpt=ckpt, device=args.device) | |
elif args.model_name == 'minicpmv26': | |
model = MiniCPM_V_2_6(model_path=model_path, ckpt=ckpt, device=args.device) | |
else: | |
raise Exception(f"Unexpected Moedel Name {args.model_name}!") | |
return model | |
def main(args): | |
np.random.seed(0) | |
max_sample_num = None | |
torch.distributed.init_process_group( | |
backend='nccl', | |
world_size=int(os.getenv('WORLD_SIZE', '1')), | |
rank=int(os.getenv('RANK', '0')), | |
) | |
torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0))) | |
print(f'Init Rank-{torch.distributed.get_rank()}') | |
if torch.distributed.is_initialized(): | |
args.device = torch.device(f"cuda:{torch.cuda.current_device()}") | |
model = get_model(args) | |
result = {} | |
time = datetime.datetime.now().strftime("%Y%m%d%H%M%S") | |
if args.eval_textVQA or args.eval_all: | |
dataset = textVQADataset(args.textVQA_image_dir, args.textVQA_ann_path) | |
if max_sample_num is not None: | |
dataset = torch.utils.data.Subset(dataset, range(max_sample_num)) | |
acc = evaluate_VQA(model, dataset, args.model_name, 'textVQA', time, \ | |
batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path) | |
result['textVQA'] = acc | |
if args.eval_docVQA or args.eval_all: | |
dataset = docVQADataset(args.docVQA_image_dir, args.docVQA_ann_path) | |
if max_sample_num is not None: | |
dataset = torch.utils.data.Subset(dataset, range(max_sample_num)) | |
acc = evaluate_VQA(model, dataset, args.model_name, 'docVQA', time, batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path) | |
result['docVQA'] = acc | |
if args.eval_docVQATest or args.eval_all: | |
target_dataset = "docVQATest" | |
dataset = docVQATESTDataset(args.docVQATest_image_dir, args.docVQATest_ann_path) | |
if max_sample_num is not None: | |
dataset = torch.utils.data.Subset(dataset, range(max_sample_num)) | |
acc = evaluate_VQA(model, dataset, args.model_name, target_dataset, time, batch_size=args.batchsize, generate_method=args.generate_method, answer_path=args.answer_path) | |
result['docVQATest'] = acc | |
if torch.distributed.is_initialized(): | |
torch.distributed.barrier() | |
if torch.distributed.is_initialized() and torch.distributed.get_rank() != 0: | |
return None | |
result_path = os.path.join(os.path.join(args.answer_path, args.model_name), 'result.json') | |
output_flag = False | |
for k, v in result.items(): | |
if v > 0.0: | |
output_flag = True | |
break | |
if output_flag: | |
with open(result_path, "w") as f: | |
f.write(json.dumps(result, indent=4)) | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) |