## SWIFT install You can quickly install SWIFT using bash commands. ``` bash git clone https://github.com/modelscope/swift.git cd swift pip install -r requirements.txt pip install -e '.[llm]' ``` ## SWIFT Infer Inference using SWIFT can be carried out in two ways: through a command line interface and via Python code. ### Quick start Here are the steps to launch SWIFT from the Bash command line: 1. Run the bash code will download the model of MiniCPM-Llama3-V-2_5 and run the inference ``` shell CUDA_VISIBLE_DEVICES=0 swift infer --model_type minicpm-v-v2_5-chat ``` 2. You can also run the code with more arguments below to run the inference: ``` model_id_or_path # Can be the model ID from Hugging Face or the local path to the model infer_backend ['AUTO', 'vllm', 'pt'] # Backend for inference, default is auto dtype ['bf16', 'fp16', 'fp32', 'AUTO'] # Computational precision max_length # Maximum length max_new_tokens: int = 2048 # Maximum number of tokens to generate do_sample: bool = True # Whether to sample during generation temperature: float = 0.3 # Temperature coefficient during generation top_k: int = 20 top_p: float = 0.7 repetition_penalty: float = 1. # Penalty for repetition num_beams: int = 1 # Number of beams for beam search stop_words: List[str] = None # List of stop words quant_method ['bnb', 'hqq', 'eetq', 'awq', 'gptq', 'aqlm'] # Quantization method for the model quantization_bit [0, 1, 2, 3, 4, 8] # Default is 0, which means no quantization is used ``` 3. Example: ``` shell CUDA_VISIBLE_DEVICES=0,1 swift infer \ --model_type minicpm-v-v2_5-chat \ --model_id_or_path /root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5 \ --dtype bf16 ``` ### Python code with SWIFT infer The following demonstrates using Python code to initiate inference with the MiniCPM-Llama3-V-2_5 model through SWIFT. ```python import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # Set the number of GPUs to use from swift.llm import ( get_model_tokenizer, get_template, inference, ModelType, get_default_template_type, inference_stream ) # Import necessary modules from swift.utils import seed_everything # Set random seed import torch model_type = ModelType.minicpm_v_v2_5_chat template_type = get_default_template_type(model_type) # Obtain the template type, primarily used for constructing special tokens and image processing workflow print(f'template_type: {template_type}') model, tokenizer = get_model_tokenizer(model_type, torch.bfloat16, model_id_or_path='/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5', model_kwargs={'device_map': 'auto'}) # Load the model, set model type, model path, model parameters, device allocation, etc., computation precision, etc. model.generation_config.max_new_tokens = 256 template = get_template(template_type, tokenizer) # Construct the template based on the template type seed_everything(42) images = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/road.png'] # Image URL query = '距离各城市多远?' # Note: Query is still in Chinese, consider translating if needed response, history = inference(model, template, query, images=images) # Obtain results through inference print(f'query: {query}') print(f'response: {response}') # Streaming output query = '距离最远的城市是哪?' # Note: Query is still in Chinese, consider translating if needed gen = inference_stream(model, template, query, history, images=images) # Call the streaming output interface print_idx = 0 print(f'query: {query}\nresponse: ', end='') for response, history in gen: delta = response[print_idx:] print(delta, end='', flush=True) print_idx = len(response) print() print(f'history: {history}') ``` ## SWIFT train SWIFT supports training on the local dataset,the training steps are as follows: 1. Make the train data like this: ```jsonl {"query": "What does this picture describe?", "response": "This picture has a giant panda.", "images": ["local_image_path"]} {"query": "What does this picture describe?", "response": "This picture has a giant panda.", "history": [], "images": ["image_path"]} {"query": "Is bamboo tasty?", "response": "It seems pretty tasty judging by the panda's expression.", "history": [["What's in this picture?", "There's a giant panda in this picture."], ["What is the panda doing?", "Eating bamboo."]], "images": ["image_url"]} ``` 2. LoRA Tuning: The LoRA target model are k and v weight in LLM you should pay attention to the eval_steps,maybe you should set the eval_steps to a large value, like 200000,beacuase in the eval time , SWIFT will return a memory bug so you should set the eval_steps to a very large value. ```shell # Experimental environment: A100 # 32GB GPU memory CUDA_VISIBLE_DEVICES=0 swift sft \ --model_type minicpm-v-v2_5-chat \ --dataset coco-en-2-mini \ ``` 3. All parameters finetune: When the argument of lora_target_modules is ALL, the model will finetune all the parameters. ```shell CUDA_VISIBLE_DEVICES=0,1 swift sft \ --model_type minicpm-v-v2_5-chat \ --dataset coco-en-2-mini \ --lora_target_modules ALL \ --eval_steps 200000 ``` ## LoRA Merge and Infer The LoRA weight can be merge to the base model and then load to infer. 1. Load the LoRA weight to infer run the follow code: ```shell CUDA_VISIBLE_DEVICES=0 swift infer \ --ckpt_dir /your/lora/save/checkpoint ``` 2. Merge the LoRA weight to the base model: The code will load and merge the LoRA weight to the base model, save the merge model to the LoRA save path and load the merge model to infer ```shell CUDA_VISIBLE_DEVICES=0 swift infer \ --ckpt_dir your/lora/save/checkpoint \ --merge_lora true ```