# Evaluation ## MiniCPM-V 2.6 ### opencompass First, enter the `vlmevalkit` directory and install all dependencies: ```bash cd vlmevalkit pip install --upgrade pip pip install -e . wget https://download.pytorch.org/whl/cu118/torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=4377e0a7fe8ff8ffc4f7c9c6130c1dcd3874050ae4fc28b7ff1d35234fbca423 wget https://download.pytorch.org/whl/cu118/torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=2e63d62e09d9b48b407d3e1b30eb8ae4e3abad6968e8d33093b60d0657542428 wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl pip install torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl pip install torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl pip install flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl ```
Then, run `scripts/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode: ```bash chmod +x ./scripts/run_inference.sh ./scripts/run_inference.sh $MODELNAME $DATALIST $MODE ```
The four available choices for `MODELNAME` are listed in `vlmeval/config.py`: ```bash minicpm_series = { 'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'), 'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'), 'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'), 'MiniCPM-V-2_6': partial(MiniCPM_V_2_6, model_path='openbmb/MiniCPM-V-2_6'), } ```
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. Separate the names of different datasets with spaces and add quotation marks at both ends: ```bash $DATALIST="MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST" ```
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and HallusionBench), you need to run the script according to the following settings: ```bash # without CoT ./scripts/run_inference.sh MiniCPM-V-2_6 "MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST" all ./scripts/run_inference.sh MiniCPM-V-2_6 MME all # with CoT # While running the CoT version of MME, you need to modify the 'use_cot' function in vlmeval/vlm/minicpm_v.py and add MME to the branch that returns True. ./scripts/run_inference/sh MiniCPM-V-2_6 "MMMU_DEV_VAL MMVet MMStar HallusionBench OCRBench" all ./scripts/run_inference.sh MiniCPM-V-2_6 MME all ```
### vqadataset First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks: ```bash cd vqaeval pip install -r requirements.txt mkdir downloads ```
Download the datasets from the following links and place it in the specified directories: ###### TextVQA ```bash cd downloads mkdir TextVQA && cd TextVQA wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip unzip train_val_images.zip && rm train_val_images.zip mv train_val_images/train_images . && rm -rf train_val_images wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json cd ../.. ``` ###### DocVQA / DocVQATest ```bash cd downloads mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images # Download Images and Annotations from Task 1 - Single Page Document Visual Question Answering at https://rrc.cvc.uab.es/?ch=17&com=downloads # Move the spdocvqa_images.tar.gz and spdocvqa_qas.zip to DocVQA directory tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas cd ../.. ```
The `downloads` directory should be organized according to the following structure: ```bash downloads ├── TextVQA │ ├── train_images │ │ ├── ... │ ├── TextVQA_0.5.1_val.json ├── DocVQA │ ├── spdocvqa_images │ │ ├── ... │ ├── val_v1.0_withQT.json │ ├── test_v1.0.json ```
Modify the parameters in `shell/run_inference.sh` and run inference: ```bash chmod +x ./shell/run_inference.sh ./shell/run_inference.sh ```
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows. For `MiniCPM-V-2_6`, set `model_name` to `minicpmv26`: ```bash # path to images and their corresponding questions # TextVQA --textVQA_image_dir --textVQA_ann_path # DocVQA --docVQA_image_dir --docVQA_ann_path # DocVQATest --docVQATest_image_dir --docVQATest_ann_path # whether to eval on certain task --eval_textVQA --eval_docVQA --eval_docVQATest --eval_all # model name and model path --model_name --model_path # load model from ckpt --ckpt # the way the model processes input data, "interleave" represents interleaved image-text form, while "old" represents non-interleaved. --generate_method --batchsize # path to save the outputs --answer_path ```
While evaluating on different tasks, parameters need to be set as follows: ###### TextVQA ```bash --eval_textVQA --textVQA_image_dir ./downloads/TextVQA/train_images --textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json ``` ###### DocVQA ```bash --eval_docVQA --docVQA_image_dir ./downloads/DocVQA/spdocvqa_images --docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json ``` ###### DocVQATest ```bash --eval_docVQATest --docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images --docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json ```
For the DocVQATest task, in order to upload the inference results to the [official website](https://rrc.cvc.uab.es/?ch=17) for evaluation, run `shell/run_transform.sh` for format transformation after inference. `input_file_path` represents the path to the original output json, `output_file_path` represents the path to the transformed json: ```bash chmod +x ./shell/run_transform.sh ./shell/run_transform.sh ```
## MiniCPM-Llama3-V-2_5
Expand ### opencompass First, enter the `vlmevalkit` directory and install all dependencies: ```bash cd vlmevalkit pip install -r requirements.txt ```
Then, run `scripts/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode: ```bash chmod +x ./scripts/run_inference.sh ./scripts/run_inference.sh $MODELNAME $DATALIST $MODE ```
The three available choices for `MODELNAME` are listed in `vlmeval/config.py`: ```bash ungrouped = { 'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'), 'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'), 'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'), } ```
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. While evaluating on a single dataset, call the dataset name directly without quotation marks; while evaluating on multiple datasets, separate the names of different datasets with spaces and add quotation marks at both ends: ```bash $DATALIST="POPE ScienceQA_TEST ChartQA_TEST" ```
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and RealWorldQA), you need to run the script according to the following settings: ```bash # run on all 7 datasets ./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all # The following are instructions for running on a single dataset # MME ./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MME all # MMBench_TEST_EN ./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all # MMBench_TEST_CN ./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all # MMMU_DEV_VAL ./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all # MathVista_MINI ./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all # LLaVABench ./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all # RealWorldQA ./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all ```
### vqadataset First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks: ```bash cd vqaeval pip install -r requirements.txt mkdir downloads ```
Download the datasets from the following links and place it in the specified directories: ###### TextVQA ```bash cd downloads mkdir TextVQA && cd TextVQA wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip unzip train_val_images.zip && rm train_val_images.zip mv train_val_images/train_images . && rm -rf train_val_images wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json cd ../.. ``` ###### DocVQA / DocVQATest ```bash cd downloads mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images # Download Images and Annotations from Task 1 - Single Page Document Visual Question Answering at https://rrc.cvc.uab.es/?ch=17&com=downloads # Move the spdocvqa_images.tar.gz and spdocvqa_qas.zip to DocVQA directory tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas cd ../.. ```
The `downloads` directory should be organized according to the following structure: ```bash downloads ├── TextVQA │ ├── train_images │ │ ├── ... │ ├── TextVQA_0.5.1_val.json ├── DocVQA │ ├── spdocvqa_images │ │ ├── ... │ ├── val_v1.0_withQT.json │ ├── test_v1.0.json ```
Modify the parameters in `shell/run_inference.sh` and run inference: ```bash chmod +x ./shell/run_inference.sh ./shell/run_inference.sh ```
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows. For `MiniCPM-Llama3-V-2_5`, set `model_name` to `minicpmv`: ```bash # path to images and their corresponding questions # TextVQA --textVQA_image_dir --textVQA_ann_path # DocVQA --docVQA_image_dir --docVQA_ann_path # DocVQATest --docVQATest_image_dir --docVQATest_ann_path # whether to eval on certain task --eval_textVQA --eval_docVQA --eval_docVQATest --eval_all # model name and model path --model_name --model_path # load model from ckpt --ckpt # the way the model processes input data, "interleave" represents interleaved image-text form, while "old" represents non-interleaved. --generate_method --batchsize # path to save the outputs --answer_path ```
While evaluating on different tasks, parameters need to be set as follows: ###### TextVQA ```bash --eval_textVQA --textVQA_image_dir ./downloads/TextVQA/train_images --textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json ``` ###### DocVQA ```bash --eval_docVQA --docVQA_image_dir ./downloads/DocVQA/spdocvqa_images --docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json ``` ###### DocVQATest ```bash --eval_docVQATest --docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images --docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json ```
For the DocVQATest task, in order to upload the inference results to the [official website](https://rrc.cvc.uab.es/?ch=17) for evaluation, run `shell/run_transform.sh` for format transformation after inference. `input_file_path` represents the path to the original output json, `output_file_path` represents the path to the transformed json: ```bash chmod +x ./shell/run_transform.sh ./shell/run_transform.sh ```