import cv2 as cv import numpy as np import torch from gensim import models import xgboost as xgb import XGBoost_utils import sys import joblib from DL_models import CustomResNet root = '/Users/jianpingye/Desktop/Marketing_Research/XGBoost_Gaze_Prediction_Platform/Gaze-Time-Prediction-for-Advertisement/XGBoost_Prediction_Model' sys.path.append(root) #Ad/Brand Gaze Prediction #Now the model is only able to process magazine images or images with full-page counterpages #Please indicate where is the ad by ad_location parameter: left <- ad_location=0, right <- ad_location=1; otherwise, set it as None def Ad_Gaze_Prediction(input_ad_path, input_ctpg_path, ad_location, text_detection_model_path, LDA_model_pth, training_ad_text_dictionary_path, training_lang_preposition_path, training_language, ad_embeddings, ctpg_embeddings, surface_sizes=None, Product_Group=None, TextBoxes=None, Obj_and_Topics=None, obj_detection_model_pth=None, num_topic=20, Gaze_Time_Type='Brand', Info_printing=True): ##Image Loading if Info_printing: print('Loading Image ......') flag_full_page_ad = False has_ctpg = True if type(input_ad_path) == str: ad_img = cv.imread(input_ad_path) ad_img = cv.cvtColor(ad_img, cv.COLOR_BGR2RGB) ad_img_dim1, ad_img_dim2 = ad_img.shape[:2] dim1_scale = int(np.ceil(ad_img_dim1/32)) dim2_scale = int(np.ceil(ad_img_dim2/32)) ad_img = cv.resize(ad_img, (32*dim2_scale,32*dim1_scale)) else: ad_img = input_ad_path if input_ctpg_path is None: ctpg_img = None #Initialization flag_full_page_ad = True has_ctpg = False else: if type(input_ctpg_path) == str: ctpg_img = cv.imread(input_ctpg_path) ctpg_img = cv.cvtColor(ctpg_img, cv.COLOR_BGR2RGB) ctpg_img_dim1, ctpg_img_dim2 = ctpg_img.shape[:2] dim1_scale = int(np.ceil(ctpg_img_dim1/32)) dim2_scale = int(np.ceil(ctpg_img_dim2/32)) ctpg_img = cv.resize(ctpg_img, (32*dim2_scale,32*dim1_scale)) else: ctpg_img = input_ctpg_path #ctpg_img_dim1, ctpg_img_dim2 = [None,None] # ctpg_img = None #Initialization # flag_full_page_ad = False # if has_ctpg: # img = cv.resize(img, (1280,1024)) # h, w, _ = img.shape # page_width = w // 2 # ctpg_location = 1-ad_location # ad_img = img[:, (ad_location*page_width):((ad_location+1)*page_width)] # ctpg_img = img[:, (ctpg_location*page_width):((ctpg_location+1)*page_width)] # else: # #if image's width is larger its height, then treat it as a double-page ad # h, w, _ = img.shape # if w > h: # ad_img = cv.resize(img, (1280,1024)) # flag_full_page_ad = True # else: # ad_img = cv.resize(img, (640,1024)) if Info_printing: print() ##File Size if Info_printing: print('Calculating complexity (filsize) ......') filesize_ad = XGBoost_utils.filesize_individual(input_ad_path) if has_ctpg: filesize_ctpg = XGBoost_utils.filesize_individual(input_ctpg_path) else: filesize_ctpg = 0 if Info_printing: print() ##Salience if Info_printing: print('Processing Salience Information ......') #Salience Map S_map_ad = XGBoost_utils.Itti_Saliency(ad_img, scale_final=3) if has_ctpg: S_map_ctpg = XGBoost_utils.Itti_Saliency(ctpg_img, scale_final=3) #K-Mean threshold = 0.001 enhance_rate = 1 num_clusters = 3 if flag_full_page_ad: width = S_map_ad.shape[1] left = S_map_ad[:, :width//2] vecs_left, km_left = XGBoost_utils.salience_matrix_conv(left,threshold,num_clusters,enhance_rate=enhance_rate) _,scores_left,widths_left,D_left = XGBoost_utils.img_clusters(num_clusters, left, km_left.labels_, km_left.cluster_centers_, vecs_left) right = S_map_ad[:, width//2:] vecs_right, km_right = XGBoost_utils.salience_matrix_conv(right,threshold,num_clusters,enhance_rate=enhance_rate) _,scores_right,widths_right,D_right = XGBoost_utils.img_clusters(num_clusters, right, km_right.labels_, km_right.cluster_centers_, vecs_right) ad_sal = np.array(scores_left) + np.array(scores_right) ad_width = np.array(widths_left) + np.array(widths_right); ad_width = np.log(ad_width+1) ad_sig_obj = D_left + D_right ctpg_sal = np.zeros_like(ad_sal) ctpg_width = np.zeros_like(ad_width) ctpg_sig_obj = 0 else: vecs, km = XGBoost_utils.salience_matrix_conv(S_map_ad,threshold,num_clusters,enhance_rate=enhance_rate) _,scores,widths,D = XGBoost_utils.img_clusters(num_clusters, S_map_ad, km.labels_, km.cluster_centers_, vecs) ad_sal = np.array(scores) ad_width = np.log(np.array(widths)+1) ad_sig_obj = D if has_ctpg: vecs, km = XGBoost_utils.salience_matrix_conv(S_map_ctpg,threshold,num_clusters,enhance_rate=enhance_rate) _,scores,widths,D = XGBoost_utils.img_clusters(num_clusters, S_map_ctpg, km.labels_, km.cluster_centers_, vecs) ctpg_sal = np.array(scores) ctpg_width = np.log(np.array(widths)+1) ctpg_sig_obj = D else: ctpg_sal = np.zeros_like(ad_sal) ctpg_width = np.zeros_like(ad_width) ctpg_sig_obj = 0 if Info_printing: print() ##Number of Textboxes if Info_printing: print('Processing Textboxes ......') if TextBoxes is None: #Need multiples of 32 in both dimensions ad_num_textboxes = XGBoost_utils.text_detection_east(ad_img, text_detection_model_path) if has_ctpg: ctpg_num_textboxes = XGBoost_utils.text_detection_east(ctpg_img, text_detection_model_path) else: ctpg_num_textboxes = 0 else: ad_num_textboxes, ctpg_num_textboxes = TextBoxes if Info_printing: print() ##Objects and Topic Difference if Info_printing: print('Processing Object and Topic Information ......') if Info_printing: print('Loading Object Detection Model') if Obj_and_Topics is None: if obj_detection_model_pth is None: model_obj = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, trust_repo=True) else: model_obj = torch.load(obj_detection_model_pth) model_lda = models.LdaModel.load(LDA_model_pth) dictionary = torch.load(training_ad_text_dictionary_path) dutch_preposition = torch.load(training_lang_preposition_path) ad_num_objs, ctpg_num_objs, ad_topic_weights, topic_Diff = XGBoost_utils.object_and_topic_variables(ad_img, ctpg_img, has_ctpg, dictionary, dutch_preposition, training_language, model_obj, model_lda, num_topic) else: ad_num_objs, ctpg_num_objs, ad_topic_soft_weights, ctpg_topic_soft_weights = Obj_and_Topics indx = np.argmax(ad_topic_soft_weights) ad_topic_weights = np.zeros(num_topic) ad_topic_weights[indx] = 1 topic_Diff = XGBoost_utils.KL_dist(ad_topic_soft_weights, ctpg_topic_soft_weights) if Info_printing: print() ##Left and Right Indicator if Info_printing: print('Getting Left/Right Indicator ......') if flag_full_page_ad: Left_right_indicator = [1,1] else: if has_ctpg: if ad_location == 0: Left_right_indicator = [1,0] elif ad_location == 1: Left_right_indicator = [0,1] else: Left_right_indicator = [1,1] else: Left_right_indicator = [1,0] if Info_printing: print() ##Product Category if Info_printing: print('Getting Product Category Indicator ......') if Product_Group is None: group_ind = XGBoost_utils.product_category() else: group_ind = Product_Group if Info_printing: print() ##Surface Sizes if Info_printing: print('Getting Surface Sizes ......') if surface_sizes is None: ad_img = cv.cvtColor(ad_img, cv.COLOR_RGB2BGR) print('Please select the bounding box for your ad (from top left to bottom right)') A = XGBoost_utils.Region_Selection(ad_img) print() print('Please select the bounding box for brands (from top left to bottom right)') B = XGBoost_utils.Region_Selection(ad_img) print() print('Please select the bounding box for texts (from top left to bottom right)') T = XGBoost_utils.Region_Selection(ad_img) surface_sizes = [B/A*100,(1-B/A-T/A)*100,T/A*100,sum(Left_right_indicator)*5] ##Typicality Measure # if Info_printing: print('Calculating Typicality Measure ......') # if Info_printing: print() ##Get All things together if Info_printing: print('Predicting ......') gaze = 0 for i in range(10): #Var construction pca_topic_transform = joblib.load('Topic_Embedding_PCAs/pca_model_'+str(i)+'.pkl') ad_topics_curr = pca_topic_transform.transform(ad_embeddings)[:,:4][0] ctpg_topics_curr = pca_topic_transform.transform(ctpg_embeddings)[:,:4][0] ad_topic_weights = ad_topics_curr topic_Diff = np.linalg.norm(ad_topics_curr-ctpg_topics_curr) X = surface_sizes+[filesize_ad,filesize_ctpg]+list(ad_sal)+list(ctpg_sal)+list(ad_width)+list(ctpg_width)+[ad_sig_obj,ctpg_sig_obj]+[ad_num_textboxes,ctpg_num_textboxes,ad_num_objs,ctpg_num_objs]+list(group_ind)+list(ad_topic_weights) X = np.array(X).reshape(1,len(X)) X_for_typ = list(X[0,[0,1,2,3,4,6,7,8,12,13,14,18,20,22]])+list(group_ind)+list(ad_topic_weights) X_for_typ = np.array(X_for_typ).reshape(1,len(X_for_typ)) if Gaze_Time_Type == 'Brand': med = torch.load('Brand_Gaze_Model/typicality_train_medoid') elif Gaze_Time_Type == 'Ad': med = torch.load('Ad_Gaze_Model/typicality_train_medoid') typ = XGBoost_utils.typ_cat(med, X_for_typ, group_ind, np.abs) Var = surface_sizes+[filesize_ad,filesize_ctpg]+list(ad_sal)+list(ctpg_sal)+list(ad_width)+list(ctpg_width)+[ad_sig_obj,ctpg_sig_obj]+[ad_num_textboxes,ctpg_num_textboxes,ad_num_objs,ctpg_num_objs]+Left_right_indicator+list(ad_topic_weights)+list(group_ind)+[topic_Diff.item(),typ.item()] Var = np.array(Var).reshape(1,len(Var)) xgb_model = xgb.XGBRegressor() if Gaze_Time_Type == 'Brand': xgb_model.load_model('Brand_Gaze_Model/10_models/Model_'+str(i+1)+'.json') elif Gaze_Time_Type == 'Ad': xgb_model.load_model('Ad_Gaze_Model/10_models/Model_'+str(i+1)+'.json') gaze += xgb_model.predict(Var) gaze = gaze/10 if Info_printing: print('The predicted '+Gaze_Time_Type+' gaze time is: ', (np.exp(gaze)-1).item()) return (np.exp(gaze)-1).item() def CNN_Prediction(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG'): #Gaze_Type='AG' or 'BG' gaze = 0 if torch.cuda.is_available(): device = 'cuda' elif torch.backends.mps.is_available(): device = 'mps' else: device = 'cpu' if Gaze_Type == 'AG': a_temp = 0.2590; b_temp = 1.1781 #AG elif Gaze_Type == 'BG': a_temp = 0.2100; b_temp = 0.3541 #BG for i in range(10): net = CustomResNet() net.load_state_dict(torch.load('CNN_Gaze_Model/Fine-tune_'+Gaze_Type+'/Model_'+str(i)+'.pth',map_location=torch.device('cpu'))) net = net.to(device) with torch.no_grad(): pred = net.forward(adv_imgs, ctpg_imgs, ad_locations) pred = torch.exp(pred*a_temp+b_temp) - 1 gaze += pred/10 return gaze def HeatMap_CNN(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG'): if torch.cuda.is_available(): device = 'cuda' elif torch.backends.mps.is_available(): device = 'mps' else: device = 'cpu' net = CustomResNet() net.load_state_dict(torch.load('CNN_Gaze_Model/Fine-tune_'+Gaze_Type+'/Model_'+str(0)+'.pth',map_location=torch.device('cpu'))) net = net.to(device) pred = net(adv_imgs/255.0,ctpg_imgs/255.0,ad_locations) pred.backward() # pull the gradients out of the model gradients = net.get_activations_gradient() # pool the gradients across the channels pooled_gradients = torch.mean(gradients, dim=[0, 2, 3]) # get the activations of the last convolutional layer activations = net.get_activations(adv_imgs).detach() # weight the channels by corresponding gradients for i in range(512): activations[:, i, :, :] *= pooled_gradients[i] # average the channels of the activations heatmap = torch.mean(activations, dim=1).squeeze().to('cpu') # relu on top of the heatmap # expression (2) in https://arxiv.org/pdf/1610.02391.pdf heatmap = np.maximum(heatmap, 0) # normalize the heatmap heatmap /= torch.max(heatmap) img = torch.permute(adv_imgs[0],(1,2,0)).to(torch.uint8).numpy() img = cv.cvtColor(img, cv.COLOR_BGR2RGB) heatmap = cv.resize(heatmap.numpy(), (img.shape[1], img.shape[0])) heatmap = np.uint8(255 * heatmap) heatmap = cv.applyColorMap(heatmap, cv.COLORMAP_TURBO) superimposed_img = heatmap * 0.8 + img * 0.5 superimposed_img /= np.max(superimposed_img) superimposed_img = np.uint8(255 * superimposed_img) return superimposed_img