import gc import math import timm import torch from torch import Tensor import torch.nn as nn from torch.nn import CrossEntropyLoss from typing import List, Optional, Tuple, Union from transformers import AutoConfig, AutoModelForCausalLM from transformers import MistralForCausalLM, MistralModel, MistralConfig from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from omnilmm.model.utils import build_transform from omnilmm.model.resampler import Resampler DEFAULT_IMAGE_PATCH_TOKEN = "" DEFAULT_IM_START_TOKEN = "" DEFAULT_IM_END_TOKEN = "" class OmniLMMConfig(MistralConfig): model_type = "omnilmm" class Identity(torch.nn.Identity): def forward(self, input: Tensor, **kwargs) -> Tensor: return super().forward(input) def create_vision_module(config): vision_tower = timm.create_model('eva02_enormous_patch14_clip_224.laion2b_plus', pretrained=False, num_classes=0, dynamic_img_size=True, dynamic_img_pad=True) if isinstance(vision_tower, timm.models.VisionTransformer): if vision_tower.attn_pool is not None: vision_tower.attn_pool = Identity() # use 2nd last layer's output vision_tower.blocks[-1] = Identity() embed_dim = config.hidden_size resampler = Resampler( grid_size=int(math.sqrt(config.num_query)), embed_dim=embed_dim, num_heads=embed_dim // 128, kv_dim=vision_tower.embed_dim, ) return vision_tower, resampler class OmniLMMModel(MistralModel): config_class = OmniLMMConfig def __init__(self, config: OmniLMMConfig, mm_vision_tower=None, mm_hidden_size=None, tune_clip=True): super(OmniLMMModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): vision_tower, resampler = create_vision_module(config) # print(__file__, 'skip loading vision tower weights') # HACK: for FSDP self.vision_tower = [vision_tower] self.resampler = resampler if tune_clip: self.vision_tower = self.vision_tower[0] self.vision_config = lambda x: None def initialize_vision_modules(self, vision_tower, no_randaug, num_query, image_size, tune_clip=False): self.config.mm_vision_tower = vision_tower self.config.use_mm_proj = True self.config.num_query = num_query self.config.image_size = image_size if not hasattr(self, 'vision_tower'): vision_tower, resampler = create_vision_module(self.config) state_dict = torch.load( '/tt/data/public/multimodal/multimodal_model_ckpts/timm/eva02_enormous_patch14_clip_224.laion2b_plus.pt') vision_tower.load_state_dict(state_dict, strict=False) del state_dict gc.collect() else: if isinstance(self.vision_tower, list): vision_tower = self.vision_tower[0] else: vision_tower = self.vision_tower resampler = self.resampler self.vision_tower = vision_tower if tune_clip else [vision_tower] self.resampler = resampler train_img_transform = build_transform( is_train=True, randaug=not no_randaug, input_size=self.config.image_size, std_mode='OPENAI_CLIP') eval_img_transform = build_transform( is_train=False, input_size=self.config.image_size, std_mode='OPENAI_CLIP') return dict( image_processor=(train_img_transform, eval_img_transform), image_token_len=num_query, vision_config=self.vision_config ) def get_vision_embedding(self, pixel_values): if isinstance(self.vision_tower, list): vision_tower = self.vision_tower[0] # HACK: for FSDP else: vision_tower = self.vision_tower dtype = vision_tower.pos_embed.data.dtype vision_embedding = vision_tower.forward_features( pixel_values.type(dtype)) if hasattr(vision_tower, 'num_prefix_tokens') and vision_tower.num_prefix_tokens > 0: vision_embedding = vision_embedding[:, vision_tower.num_prefix_tokens:] res = self.resampler(vision_embedding) return res def get_vllm_embedding(self, data): if 'vision_hidden_states' not in data: pixel_values_list = data['pixel_values'] vision_hidden_states = [] for pixel_values in pixel_values_list: if len(pixel_values) > 0: vision_hidden_states.append(self.get_vision_embedding(pixel_values.unsqueeze(0))[0]) else: vision_hidden_states.append([]) else: vision_hidden_states = data['vision_hidden_states'] #vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb inputs_embeds = self.embed_tokens(data['input_ids']) vision_hidden_states = [i.type(inputs_embeds.dtype) if isinstance(i, torch.Tensor) else i for i in vision_hidden_states ] # HACK: replace back original embeddings for LLaVA pretraining orig_embeds_params = getattr(self, 'orig_embeds_params', None) new_input_embeds = [] cur_image_idx = 0 for cur_input_ids, cur_input_embeds in zip(data['input_ids'], inputs_embeds): if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0: # multimodal LLM, but the current sample is not multimodal cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum() new_input_embeds.append(cur_input_embeds) continue if self.vision_config.use_im_start_end: cur_image_features = vision_hidden_states[cur_image_idx] num_patches = cur_image_features.shape[0] if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum(): raise ValueError( "The number of image start tokens and image end tokens should be the same.") image_start_tokens = torch.where( cur_input_ids == self.vision_config.im_start_token)[0] for image_start_token_pos in image_start_tokens: cur_image_features = vision_hidden_states[cur_image_idx].to( device=cur_input_embeds.device) num_patches = cur_image_features.shape[0] if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token: raise ValueError( "The image end token should follow the image start token.") if orig_embeds_params is not None: cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0) else: cur_new_input_embeds = torch.cat( (cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0) cur_image_idx += 1 new_input_embeds.append(cur_new_input_embeds) else: raise NotImplementedError inputs_embeds = torch.stack(new_input_embeds, dim=0) return inputs_embeds, vision_hidden_states def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, **kwargs ) -> Union[Tuple, BaseModelOutputWithPast]: # HACK: replace back original embeddings for LLaVA pretraining orig_embeds_params = getattr(self, 'orig_embeds_params', None) if inputs_embeds is None and past_key_values is None: inputs_embeds = self.embed_tokens(input_ids) vision_tower = getattr(self, 'vision_tower', None) if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None: if type(images) is list: image_features = [] for image in images: image_forward_out = self.get_vision_embedding(image.unsqueeze(0))[ 0] image_features.append(image_forward_out) else: image_features = self.get_vision_embedding(images) dummy_image_features = torch.zeros( self.config.num_query, self.config.hidden_size, device=inputs_embeds.device, dtype=inputs_embeds.dtype) new_input_embeds = [] cur_image_idx = 0 for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds): if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0: # multimodal LLM, but the current sample is not multimodal cur_input_embeds = cur_input_embeds + \ (0. * dummy_image_features).sum() new_input_embeds.append(cur_input_embeds) continue if self.vision_config.use_im_start_end: cur_image_features = image_features[cur_image_idx] num_patches = cur_image_features.shape[0] if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum(): raise ValueError( "The number of image start tokens and image end tokens should be the same.") image_start_tokens = torch.where( cur_input_ids == self.vision_config.im_start_token)[0] for image_start_token_pos in image_start_tokens: cur_image_features = image_features[cur_image_idx].to( device=cur_input_embeds.device) num_patches = cur_image_features.shape[0] if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token: raise ValueError( "The image end token should follow the image start token.") if orig_embeds_params is not None: cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0) else: cur_new_input_embeds = torch.cat( (cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0) cur_image_idx += 1 new_input_embeds.append(cur_new_input_embeds) else: raise NotImplementedError inputs_embeds = torch.stack(new_input_embeds, dim=0) input_ids = None return super(OmniLMMModel, self).forward( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs ) class OmniLMMForCausalLM(MistralForCausalLM): config_class = OmniLMMConfig def __init__(self, config, mm_vision_tower=None, tune_clip=True): super(MistralForCausalLM, self).__init__(config) self.model = OmniLMMModel( config, mm_vision_tower=mm_vision_tower, tune_clip=tune_clip) self.lm_head = nn.Linear( config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, **kwargs ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # print(f'@@@ At forward, labels: {labels.shape}-{labels}', flush=True) # print(f'@@@ At forward, input_ids: {input_ids.shape}-{input_ids}', flush=True) # print(f'@@@ At forward, input_ids: {attention_mask.shape}-{attention_mask}', flush=True) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, images=images, **kwargs ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model/pipeline parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # TODO could be removed for generate_vllm() def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values: input_ids = input_ids[:, -1:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "images": kwargs.get("images", None), } ) return model_inputs def generate_vllm( self, input_ids: torch.LongTensor = None, images: Optional[torch.FloatTensor] = None, vision_hidden_states=None, return_vision_hidden_states=False, **kwargs ): model_inputs = {'input_ids': input_ids} if vision_hidden_states is None: model_inputs['pixel_values'] = images else: model_inputs['vision_hidden_states'] = vision_hidden_states with torch.inference_mode(): inputs_embeds, vision_hidden_states = self.model.get_vllm_embedding(model_inputs) result = self.generate( inputs_embeds=inputs_embeds, **kwargs ) if return_vision_hidden_states: return result, vision_hidden_states return result def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device, tune_mm_mlp_adapter=False): self.model.vision_config.use_im_start_end = mm_use_im_start_end tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if mm_use_im_start_end: num_new_tokens = tokenizer.add_tokens( [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) self.model.vision_config.im_start_token, self.model.vision_config.im_end_token = tokenizer.convert_tokens_to_ids( [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg # for new sft data num_new_tokens = tokenizer.add_tokens( ['', '', '', '', '', ''], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg if tune_mm_mlp_adapter: self.model.orig_embeds_params = [ self.get_input_embeddings().weight.data.clone().to(device=device)] for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False self.model.vision_config.im_patch_token = tokenizer.convert_tokens_to_ids( [DEFAULT_IMAGE_PATCH_TOKEN])[0] print(f'Tokenizer: {tokenizer}\n patch_token_id: {self.model.vision_config.im_patch_token}, visoin_config: {self.model.vision_config}', flush=True) # exit() AutoConfig.register("omnilmm", OmniLMMConfig) AutoModelForCausalLM.register(OmniLMMConfig, OmniLMMForCausalLM)