File size: 1,629 Bytes
bd9a64a
b938b9c
 
bd9a64a
b938b9c
 
bd9a64a
b938b9c
1cda371
150d813
 
bd9a64a
150d813
 
 
bd9a64a
150d813
056a08f
 
bd9a64a
056a08f
 
b938b9c
056a08f
 
 
 
 
 
 
 
 
 
1cda371
150d813
056a08f
 
 
 
150d813
056a08f
bd9a64a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
#from summarizer import Summarizer

tokenizer = AutoTokenizer.from_pretrained("DemocracyStudio/generate_nft_content")
model = AutoModelForCausalLM.from_pretrained("DemocracyStudio/generate_nft_content")

#summarize=Summarizer()

st.title("Text generation for the marketing content of NFTs")
st.subheader("Course project 'NLP with transformers' at opencampus.sh, Spring 2022")
    
st.sidebar.image("bayc crown.png", use_column_width=True)
topics=["NFT", "Blockchain", "Metaverse"]
choice = st.sidebar.selectbox("Select one topic", topics)
    
if choice == 'NFT':
    keywords=st.text_area("Input 4 keywords here: (optional)")
    length=st.text_area("How long should be your text? (default: 512 words)")

    if st.button("Generate"):
        prompt = "<|startoftext|>"
        generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)        
        sample_outputs = model.generate(
        generated,
        do_sample=True,
        top_k=50,
        max_length = 512,
        top_p=0.95,
        num_return_sequences=1
        )
    for i, sample_output in enumerate(sample_outputs):
        generated_text = tokenizer.decode(sample_output, skip_special_tokens=True)
        summary = summarize(generated_text, num_sentences=1)
      
    #st.text("Keywords: {}\n".format(keywords))
    #st.text("Length in number of words: {}\n".format(length))
    st.text("This is your tailored blog article {generated_text}")
    st.text("This is a tweet-sized summary of your article {summary}")
else:
    st.write("Topic not available yet")