Spaces:
Build error
Build error
import streamlit as st | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
from summarizer import Summarizer | |
model=GPT2LMHeadModel.from_pretrained("DemocracyStudio/generate_nft_content")) | |
tokenizer=GPT2Tokenizer.from_pretrained("DemocracyStudio/generate_nft_content") | |
summarize=Summarizer() | |
def main(): | |
st.title("Text generation for the marketing content of NFTs") | |
st.subheader("Course project 'NLP with transformers' at opencampus.sh, Spring 2022") | |
st.sidebar.image("bayc crown.png", use_column_width=True) | |
topics=["NFT", "Blockchain", "Metaverse"] | |
choice = st.sidebar.selectbox("Select one topic", topics) | |
if choice == 'NFT': | |
keywords=st.text_area("Input 4 keywords here: (optional)") | |
length=st.text_area("How long should be your text? (default: 512 words)") | |
if st.button("Generate"): | |
prompt = "<|startoftext|>" | |
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0) | |
generated = generated.to(device) | |
sample_outputs = model.generate( | |
generated, | |
do_sample=True, | |
top_k=50, | |
max_length = 512, | |
top_p=0.95, | |
num_return_sequences=1 | |
) | |
for i, sample_output in enumerate(sample_outputs): | |
generated_text = tokenizer.decode(sample_output, | |
skip_special_tokens=True) | |
st.text("Keywords: {}\n".format(keywords)) | |
st.text("Length in number of words: {}\n".format(length)) | |
st.text("This is your tailored blog article {generated_text}") | |
summary = summarize(generated_text, num_sentences=1) | |
st.text("This is a tweet-sized summary of your article {summary}") | |
else: | |
st.write("Topic not available yet") | |