import streamlit as st from transformers import GPT2Tokenizer, GPT2LMHeadModel from summarizer import Summarizer model=GPT2LMHeadModel.from_pretrained("DemocracyStudio/generate_nft_content")) tokenizer=GPT2Tokenizer.from_pretrained("DemocracyStudio/generate_nft_content") summarize=Summarizer() def main(): st.title("Text generation for the marketing content of NFTs") st.subheader("Course project 'NLP with transformers' at opencampus.sh, Spring 2022") st.sidebar.image("bayc crown.png", use_column_width=True) topics=["NFT", "Blockchain", "Metaverse"] choice = st.sidebar.selectbox("Select one topic", topics) if choice == 'NFT': keywords=st.text_area("Input 4 keywords here: (optional)") length=st.text_area("How long should be your text? (default: 512 words)") if st.button("Generate"): prompt = "<|startoftext|>" generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0) generated = generated.to(device) sample_outputs = model.generate( generated, do_sample=True, top_k=50, max_length = 512, top_p=0.95, num_return_sequences=1 ) for i, sample_output in enumerate(sample_outputs): generated_text = tokenizer.decode(sample_output, skip_special_tokens=True) st.text("Keywords: {}\n".format(keywords)) st.text("Length in number of words: {}\n".format(length)) st.text("This is your tailored blog article {generated_text}") summary = summarize(generated_text, num_sentences=1) st.text("This is a tweet-sized summary of your article {summary}") else: st.write("Topic not available yet")