import streamlit as st from transformers import pipeline, GPT2LMHeadModel, AutoTokenizer #from summarizer import Summarizer generate = pipeline(task='text-generation', model=GPT2LMHeadModel.from_pretrained("DemocracyStudio/generate_nft_content"), tokenizer=AutoTokenizer.from_pretrained("DemocracyStudio/generate_nft_content")) #summarize=Summarizer() st.title("Text generation for the marketing content of NFTs") st.subheader("Course project 'NLP with transformers' at opencampus.sh, Spring 2022") st.sidebar.image("bayc crown.png", use_column_width=True) topics=["NFT", "Blockchain", "Metaverse"] choice = st.sidebar.selectbox("Select one topic", topics) if choice == 'NFT': st.text_area("Manual input: (optional)") st.text_area("Number of sequences: (default: 1)") if st.button("Generate"): #st.text("Keywords: {}\n".format(keywords)) #st.text("Length in number of words: {}\n".format(length)) generated = generate("", num_return_sequences=1) st.text(generated) #summary = summarize(generated_text, num_sentences=1) #st.text("This is a tweet-sized summary of your article: ", summary) else: st.write("Topic not available yet")