import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM #from summarizer import Summarizer tokenizer = AutoTokenizer.from_pretrained("DemocracyStudio/generate_nft_content") model = AutoModelForCausalLM.from_pretrained("DemocracyStudio/generate_nft_content") #summarize=Summarizer() st.title("Text generation for the marketing content of NFTs") st.subheader("Course project 'NLP with transformers' at opencampus.sh, Spring 2022") st.sidebar.image("bayc crown.png", use_column_width=True) topics=["NFT", "Blockchain", "Metaverse"] choice = st.sidebar.selectbox("Select one topic", topics) if choice == 'NFT': keywords=st.text_area("Input 4 keywords here: (optional)") length=st.text_area("How long should be your text? (default: 512 words)") if st.button("Generate"): prompt = "<|startoftext|>" generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0) output = model.generate(generated, do_sample=True, top_k=50, max_length = 512, top_p=0.95, num_return_sequences=1) generated_text = tokenizer.decode(output, skip_special_tokens=True) #summary = summarize(generated_text, num_sentences=1) #st.text("Keywords: {}\n".format(keywords)) #st.text("Length in number of words: {}\n".format(length)) st.text("This is your tailored blog article:", generated_text) #st.text("This is a tweet-sized summary of your article: ", summary) else: st.write("Topic not available yet")