Demosthene-OR commited on
Commit
da18950
·
1 Parent(s): fd398d9
app.py CHANGED
@@ -43,7 +43,7 @@ if st.session_state.Cloud == 0:
43
  os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
44
 
45
  # Tabs in the ./tabs folder, imported here.
46
- from tabs import intro, text2speech_tab, sentence_similarity_tab
47
 
48
 
49
  with open("style.css", "r") as f:
@@ -58,8 +58,8 @@ st.markdown(f"<style>{style}</style>", unsafe_allow_html=True)
58
  TABS = OrderedDict(
59
  [
60
  (tr(intro.sidebar_name), intro),
61
- (tr(text2speech_tab.sidebar_name), text2speech_tab),
62
  (tr(sentence_similarity_tab.sidebar_name), sentence_similarity_tab),
 
63
  ]
64
  )
65
 
 
43
  os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
44
 
45
  # Tabs in the ./tabs folder, imported here.
46
+ from tabs import intro, sentence_similarity_tab, speech2text_tab
47
 
48
 
49
  with open("style.css", "r") as f:
 
58
  TABS = OrderedDict(
59
  [
60
  (tr(intro.sidebar_name), intro),
 
61
  (tr(sentence_similarity_tab.sidebar_name), sentence_similarity_tab),
62
+ (tr(speech2text_tab.sidebar_name), speech2text_tab),
63
  ]
64
  )
65
 
tabs/sentence_similarity_tab.py CHANGED
@@ -380,12 +380,12 @@ def run():
380
 
381
  model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
382
  embeddings = model.encode(sentences)
383
- st.write("Transformation de chaque phrase en vecteur (dimension = 384 ):")
384
  st.write(embeddings)
385
  st.write("")
386
  # Calculate cosine similarity between the two sentences
387
  similarity = cosine_similarity([embeddings[0]], [embeddings[1]])
388
- st.write(f"Cosine similarity comprise entre 0 et 1: {similarity[0][0]}")
389
  st.write("")
390
  st.write("")
391
  st.write("")
 
380
 
381
  model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
382
  embeddings = model.encode(sentences)
383
+ st.write(tr("Transformation de chaque phrase en vecteur (dimension = 384 ):"))
384
  st.write(embeddings)
385
  st.write("")
386
  # Calculate cosine similarity between the two sentences
387
  similarity = cosine_similarity([embeddings[0]], [embeddings[1]])
388
+ st.write(f"**Cosine similarity** comprise entre 0 et 1: {similarity[0][0]}")
389
  st.write("")
390
  st.write("")
391
  st.write("")
tabs/{text2speech_tab.py → speech2text_tab.py} RENAMED
@@ -17,8 +17,8 @@ if st.session_state.Cloud == 0:
17
  # import time
18
  # import random
19
 
20
- title = "Test 2 Speech"
21
- sidebar_name = "Text 2 Speech"
22
  dataPath = st.session_state.DataPath
23
  '''
24
  # Indiquer si l'on veut enlever les stop words. C'est un processus long
 
17
  # import time
18
  # import random
19
 
20
+ title = "Speech 2 Text"
21
+ sidebar_name = "Speech 2 Speech"
22
  dataPath = st.session_state.DataPath
23
  '''
24
  # Indiquer si l'on veut enlever les stop words. C'est un processus long