Spaces:
Runtime error
Runtime error
File size: 29,989 Bytes
d57e374 55f08a9 d57e374 55f08a9 d57e374 55f08a9 d57e374 117486a d57e374 55f08a9 d57e374 55f08a9 d57e374 55f08a9 d57e374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
from timeit import default_timer as timer
from datetime import timedelta
from PIL import Image
import os
import itertools
import numpy as np
from einops import rearrange
import torch
import torch.nn.functional as F
from torchvision import transforms
import transformers
from accelerate import Accelerator
from accelerate.utils import set_seed
from packaging import version
from PIL import Image
import tqdm
from typing import Any, Callable, Dict, List, Optional, Union
from transformers import AutoTokenizer, PretrainedConfig
from APadapter.ap_adapter.attention_processor import AttnProcessor2_0,IPAttnProcessor2_0
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin
from diffusers.models.attention_processor import (
AttnAddedKVProcessor,
AttnAddedKVProcessor2_0,
LoRAAttnAddedKVProcessor,
LoRAAttnProcessor,
LoRAAttnProcessor2_0,
SlicedAttnAddedKVProcessor,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
import torchaudio
from audio_encoder.AudioMAE import AudioMAEConditionCTPoolRand, extract_kaldi_fbank_feature
from audioldm.utils import default_audioldm_config
from audioldm.audio import TacotronSTFT, read_wav_file
from audioldm.audio.tools import get_mel_from_wav, _pad_spec, normalize_wav, pad_wav
from transformers import (
ClapFeatureExtractor,
ClapModel,
GPT2Model,
RobertaTokenizer,
RobertaTokenizerFast,
SpeechT5HifiGan,
T5EncoderModel,
T5Tokenizer,
T5TokenizerFast,
)
from diffusers.utils.torch_utils import randn_tensor
from peft import (
prepare_model_for_kbit_training,
LoraConfig,
get_peft_model,
PeftModel
)
from torchviz import make_dot
import json
from matplotlib import pyplot as plt
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
# check_min_version("0.17.0")
def wav_to_fbank(
filename,
target_length=1024,
fn_STFT=None,
augment_data=False,
mix_data=False,
snr=None
):
assert fn_STFT is not None
waveform = read_wav_file(filename, target_length * 160) # hop size is 160
waveform = waveform[0, ...]
waveform = torch.FloatTensor(waveform)
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
fbank = torch.FloatTensor(fbank.T)
log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T)
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
log_magnitudes_stft, target_length
)
fbank = fbank.contiguous()
log_magnitudes_stft = log_magnitudes_stft.contiguous()
waveform = waveform.contiguous()
return fbank, log_magnitudes_stft, waveform
def wav_to_mel(
original_audio_file_path,
duration,
augment_data=False,
mix_data=False,
snr=None):
config=default_audioldm_config()
fn_STFT = TacotronSTFT(
config["preprocessing"]["stft"]["filter_length"],
config["preprocessing"]["stft"]["hop_length"],
config["preprocessing"]["stft"]["win_length"],
config["preprocessing"]["mel"]["n_mel_channels"],
config["preprocessing"]["audio"]["sampling_rate"],
config["preprocessing"]["mel"]["mel_fmin"],
config["preprocessing"]["mel"]["mel_fmax"],
)
mel, _, _ = wav_to_fbank(
original_audio_file_path,
target_length=int(duration * 102.4),
fn_STFT=fn_STFT,
augment_data=augment_data,
mix_data=mix_data,
snr=snr
)
mel = mel.unsqueeze(0)
return mel
def prepare_inputs_for_generation(
inputs_embeds,
attention_mask=None,
past_key_values=None,
**kwargs,
):
if past_key_values is not None:
# only last token for inputs_embeds if past is defined in kwargs
inputs_embeds = inputs_embeds[:, -1:]
kwargs["use_cache"] = True
return {
"inputs_embeds": inputs_embeds,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
}
def generate_language_model(
language_model,
inputs_embeds: torch.Tensor = None,
max_new_tokens: int = 512,
**model_kwargs,
):
"""
Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs.
Parameters:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The sequence used as a prompt for the generation.
max_new_tokens (`int`):
Number of new tokens to generate.
model_kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward`
function of the model.
Return:
`inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The sequence of generated hidden-states.
"""
max_new_tokens = max_new_tokens if max_new_tokens is not None else language_model.config.max_new_tokens
model_kwargs = language_model._get_initial_cache_position(inputs_embeds, model_kwargs)
for _ in range(max_new_tokens):
# prepare model inputs
model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs)
# forward pass to get next hidden states
output = language_model(**model_inputs, return_dict=True)
next_hidden_states = output.last_hidden_state
# Update the model input
inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1)
# Update generated hidden states, model inputs, and length for next step
model_kwargs = language_model._update_model_kwargs_for_generation(output, model_kwargs)
return inputs_embeds[:, -max_new_tokens:, :]
def encode_prompt(
tokenizer,
tokenizer_2,
text_encoder,
text_encoder_2,
projection_model,
language_model,
prompt,
device,
num_waveforms_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
generated_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
negative_attention_mask: Optional[torch.LongTensor] = None,
max_new_tokens: Optional[int] = None,
):
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# Define tokenizers and text encoders
tokenizers = [tokenizer, tokenizer_2]
text_encoders = [text_encoder, text_encoder_2]
if prompt_embeds is None:
prompt_embeds_list = []
attention_mask_list = []
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_inputs = tokenizer(
prompt,
padding="max_length" if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) else True,
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
attention_mask = text_inputs.attention_mask
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
# logger.warning(
# f"The following part of your input was truncated because {text_encoder.config.model_type} can "
# f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}"
# )
text_input_ids = text_input_ids.to(device)
attention_mask = attention_mask.to(device)
if text_encoder.config.model_type == "clap":
prompt_embeds = text_encoder.get_text_features(
text_input_ids,
attention_mask=attention_mask,
)
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
prompt_embeds = prompt_embeds[:, None, :]
# make sure that we attend to this single hidden-state
attention_mask = attention_mask.new_ones((batch_size, 1))
else:
prompt_embeds = text_encoder(
text_input_ids,
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds_list.append(prompt_embeds)
attention_mask_list.append(attention_mask)
projection_output = projection_model(
hidden_states=prompt_embeds_list[0],
hidden_states_1=prompt_embeds_list[1],
attention_mask=attention_mask_list[0],
attention_mask_1=attention_mask_list[1],
)
projected_prompt_embeds = projection_output.hidden_states
projected_attention_mask = projection_output.attention_mask
generated_prompt_embeds = generate_language_model(
language_model,
projected_prompt_embeds,
attention_mask=projected_attention_mask,
max_new_tokens=max_new_tokens,
)
prompt_embeds = prompt_embeds.to(dtype=text_encoder_2.dtype, device=device)
attention_mask = (
attention_mask.to(device=device)
if attention_mask is not None
else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device)
)
generated_prompt_embeds = generated_prompt_embeds.to(dtype=language_model.dtype, device=device)
bs_embed, seq_len, hidden_size = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size)
# duplicate attention mask for each generation per prompt
attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt)
attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len)
bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape
# duplicate generated embeddings for each generation per prompt, using mps friendly method
generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
generated_prompt_embeds = generated_prompt_embeds.view(
bs_embed * num_waveforms_per_prompt, seq_len, hidden_size
)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
negative_prompt_embeds_list = []
negative_attention_mask_list = []
max_length = prompt_embeds.shape[1]
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
uncond_input = tokenizer(
uncond_tokens,
padding="max_length",
max_length=tokenizer.model_max_length
if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
else max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids = uncond_input.input_ids.to(device)
negative_attention_mask = uncond_input.attention_mask.to(device)
if text_encoder.config.model_type == "clap":
negative_prompt_embeds = text_encoder.get_text_features(
uncond_input_ids,
attention_mask=negative_attention_mask,
)
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
negative_prompt_embeds = negative_prompt_embeds[:, None, :]
# make sure that we attend to this single hidden-state
negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1))
else:
negative_prompt_embeds = text_encoder(
uncond_input_ids,
attention_mask=negative_attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_embeds_list.append(negative_prompt_embeds)
negative_attention_mask_list.append(negative_attention_mask)
projection_output = projection_model(
hidden_states=negative_prompt_embeds_list[0],
hidden_states_1=negative_prompt_embeds_list[1],
attention_mask=negative_attention_mask_list[0],
attention_mask_1=negative_attention_mask_list[1],
)
negative_projected_prompt_embeds = projection_output.hidden_states
negative_projected_attention_mask = projection_output.attention_mask
negative_generated_prompt_embeds = generate_language_model(
language_model,
negative_projected_prompt_embeds,
attention_mask=negative_projected_attention_mask,
max_new_tokens=max_new_tokens,
)
if do_classifier_free_guidance:
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder_2.dtype, device=device)
negative_attention_mask = (
negative_attention_mask.to(device=device)
if negative_attention_mask is not None
else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device)
)
negative_generated_prompt_embeds = negative_generated_prompt_embeds.to(
dtype=language_model.dtype, device=device
)
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1)
# duplicate unconditional attention mask for each generation per prompt
negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt)
negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len)
# duplicate unconditional generated embeddings for each generation per prompt
seq_len = negative_generated_prompt_embeds.shape[1]
negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
negative_generated_prompt_embeds = negative_generated_prompt_embeds.view(
batch_size * num_waveforms_per_prompt, seq_len, -1
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
attention_mask = torch.cat([negative_attention_mask, attention_mask])
generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds])
return prompt_embeds, attention_mask, generated_prompt_embeds
def prepare_latents(vae, vocoder, scheduler, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
shape = (
batch_size,
num_channels_latents,
height // vae_scale_factor,
vocoder.config.model_in_dim // vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * scheduler.init_noise_sigma
return latents
def plot_loss(loss_history, loss_plot_path, lora_steps):
plt.figure(figsize=(10, 6))
plt.plot(range(1, lora_steps + 1), loss_history, label="Training Loss")
plt.xlabel("Steps")
plt.ylabel("Loss")
plt.title("Training Loss Over Steps")
plt.legend()
plt.grid(True)
plt.savefig(loss_plot_path)
plt.close()
# print(f"Loss plot saved to {loss_plot_path}")
# model_path: path of the model
# image: input image, have not been pre-processed
# save_lora_dir: the path to save the lora
# prompt: the user input prompt
# lora_steps: number of lora training step
# lora_lr: learning rate of lora training
# lora_rank: the rank of lora
def train_lora(audio_path ,dtype ,time_pooling ,freq_pooling ,prompt, negative_prompt, guidance_scale, save_lora_dir, tokenizer=None, tokenizer_2=None,
text_encoder=None, text_encoder_2=None, GPT2=None, projection_model=None, vocoder=None,
vae=None, unet=None, noise_scheduler=None, lora_steps=200, lora_lr=2e-4, lora_rank=16, weight_name=None, safe_serialization=False, progress=tqdm):
time_pooling = time_pooling
freq_pooling = freq_pooling
# initialize accelerator
# accelerator = Accelerator(
# gradient_accumulation_steps=1,
# mixed_precision='no'
# )
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
set_seed(0)
# set device and dtype
# prepare accelerator
# unet_lora_layers = accelerator.prepare_model(unet_lora_layers)
# optimizer = accelerator.prepare_optimizer(optimizer)
# lr_scheduler = accelerator.prepare_scheduler(lr_scheduler)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
GPT2.requires_grad_(False)
projection_model.requires_grad_(False)
vocoder.requires_grad_(False)
unet.requires_grad_(False)
for name, param in text_encoder_2.named_parameters():
if param.requires_grad:
print(name)
for name, param in GPT2.named_parameters():
if param.requires_grad:
print(name)
for name, param in vae.named_parameters():
if param.requires_grad:
print(name)
for name, param in vocoder.named_parameters():
if param.requires_grad:
print(name)
unet.to(device)
vae.to(device)
text_encoder.to(device)
# initialize UNet LoRA
unet_lora_attn_procs = {}
i = 0 # Counter variable to iterate through the cross-attention dimension array.
cross = [None, None, 768, 768, 1024, 1024, None, None] # Predefined cross-attention dimensions for different layers.
do_copy = False
for name, attn_processor in unet.attn_processors.items():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
else:
raise NotImplementedError("name must start with up_blocks, mid_blocks, or down_blocks")
# if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)):
# lora_attn_processor_class = LoRAAttnAddedKVProcessor
# else:
# lora_attn_processor_class = (
# LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
# )
if cross_attention_dim is None:
unet_lora_attn_procs[name] = AttnProcessor2_0()
else:
cross_attention_dim = cross[i%8]
i += 1
if cross_attention_dim == 768:
unet_lora_attn_procs[name] = IPAttnProcessor2_0(
hidden_size=hidden_size,
name = name,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=8,
do_copy = do_copy
).to(device, dtype=dtype)
else:
unet_lora_attn_procs[name] = AttnProcessor2_0()
unet.set_attn_processor(unet_lora_attn_procs)
unet_lora_layers = AttnProcsLayers(unet.attn_processors)
# Optimizer creation
params_to_optimize = (unet_lora_layers.parameters())
optimizer = torch.optim.AdamW(
params_to_optimize,
lr=lora_lr,
betas=(0.9, 0.999),
weight_decay=1e-2,
eps=1e-08,
)
lr_scheduler = get_scheduler(
"constant",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=lora_steps,
num_cycles=1,
power=1.0,
)
do_classifier_free_guidance = guidance_scale > 1.0
# initialize text embeddings
with torch.no_grad():
prompt_embeds, attention_mask, generated_prompt_embeds = encode_prompt(
tokenizer,
tokenizer_2,
text_encoder,
text_encoder_2,
projection_model,
GPT2,
prompt,
device,
num_waveforms_per_prompt = 1,
do_classifier_free_guidance= do_classifier_free_guidance,
negative_prompt = negative_prompt,
)
waveform, sr = torchaudio.load(audio_path)
fbank = torch.zeros((1024, 128))
ta_kaldi_fbank = extract_kaldi_fbank_feature(waveform, sr, fbank)
mel_spect_tensor = ta_kaldi_fbank.unsqueeze(0)
model = AudioMAEConditionCTPoolRand().to(device).to(dtype=dtype)
model.eval()
mel_spect_tensor = mel_spect_tensor.to(device, dtype=next(model.parameters()).dtype)
LOA_embed = model(mel_spect_tensor, time_pool=time_pooling, freq_pool=freq_pooling)
uncond_LOA_embed = model(torch.zeros_like(mel_spect_tensor), time_pool=time_pooling, freq_pool=freq_pooling)
LOA_embeds = LOA_embed[0]
uncond_LOA_embeds = uncond_LOA_embed[0]
bs_embed, seq_len, _ = LOA_embeds.shape
num = prompt_embeds.shape[0] // 2
LOA_embeds = LOA_embeds.view(bs_embed , seq_len, -1)
LOA_embeds = LOA_embeds.repeat(num, 1, 1)
uncond_LOA_embeds = uncond_LOA_embeds.view(bs_embed , seq_len, -1)
uncond_LOA_embeds = uncond_LOA_embeds.repeat(num, 1, 1)
negative_g, g = generated_prompt_embeds.chunk(2)
uncond = torch.cat([negative_g, uncond_LOA_embeds], dim=1)
cond = torch.cat([g, LOA_embeds], dim=1)
generated_prompt_embeds = torch.cat([uncond, cond], dim=0)
model_dtype = next(unet.parameters()).dtype
generated_prompt_embeds = generated_prompt_embeds.to(model_dtype)
loss_history = []
if not os.path.exists(save_lora_dir):
os.makedirs(save_lora_dir)
weight_path = os.path.join(save_lora_dir, weight_name)
base_name, _ = os.path.splitext(weight_path)
save_image_path = f"{base_name}.png"
print(f'Save image path: {save_image_path}')
mel_spect_tensor = wav_to_mel(audio_path, duration = 10).unsqueeze(0).to(next(vae.parameters()).dtype)
for step in progress.tqdm(range(lora_steps), desc="Training LoRA..."):
unet.train()
# with accelerator.accumulate(unet):
latents_dist = vae.encode(mel_spect_tensor.to(device)).latent_dist
model_input = torch.cat([latents_dist.sample()] * 2) if do_classifier_free_guidance else latents_dist.sample()
model_input = model_input * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(model_input).to(model_input.device)
bsz, channels, height, width = model_input.shape
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
)
timesteps = timesteps.long()
# Add noise to the model input according to the noise magnitude at each timestep (this is the forward diffusion process)
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
generated_prompt_embeds = generated_prompt_embeds.to(device)
prompt_embeds = prompt_embeds.to(device)
attention_mask = attention_mask.to(device)
# Predict the noise residual
model_pred = unet(sample=noisy_model_input,
timestep=timesteps,
encoder_hidden_states=generated_prompt_embeds,
encoder_hidden_states_1=prompt_embeds,
encoder_attention_mask_1=attention_mask,
return_dict=False,
)[0]
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
loss = F.mse_loss(model_pred, target, reduction="mean")
loss_history.append(loss.item())
loss.requires_grad = True
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# with open(loss_log_path, "w") as f:
# json.dump(loss_history, f)
plot_loss(loss_history, save_image_path, step+1)
LoraLoaderMixin.save_lora_weights(
save_directory=save_lora_dir,
unet_lora_layers=unet_lora_layers,
text_encoder_lora_layers=None,
weight_name=weight_name,
safe_serialization=safe_serialization
)
del loss_history, unet_lora_layers, unet, vae, text_encoder, text_encoder_2, GPT2, projection_model, vocoder, noise_scheduler, optimizer, lr_scheduler, model
def load_lora(unet, lora_0, lora_1, alpha, dtype):
attn_procs = unet.attn_processors
for name, processor in attn_procs.items():
if hasattr(processor, 'to_v_ip') or hasattr(processor, 'to_k_ip'):
weight_name_v = name + ".to_v_ip.weight"
weight_name_k = name + ".to_k_ip.weight"
if weight_name_v in lora_0 and weight_name_v in lora_1:
v_weight = (1 - alpha) * lora_0[weight_name_v] + alpha * lora_1[weight_name_v]
if dtype == torch.float32:
processor.to_v_ip.weight = torch.nn.Parameter(v_weight.float())
elif dtype == torch.float16:
processor.to_v_ip.weight = torch.nn.Parameter(v_weight.half())
if weight_name_k in lora_0 and weight_name_k in lora_1:
k_weight = (1 - alpha) * lora_0[weight_name_k] + alpha * lora_1[weight_name_k]
if dtype == torch.float32:
processor.to_k_ip.weight = torch.nn.Parameter(k_weight.float())
elif dtype == torch.float16:
processor.to_k_ip.weight = torch.nn.Parameter(k_weight.half())
unet.set_attn_processor(attn_procs)
return unet
|