Spaces:
Runtime error
Runtime error
from audio_encoder.AudioMAE import AudioMAEConditionCTPoolRand, extract_kaldi_fbank_feature | |
import torchaudio | |
import torchaudio.transforms as T | |
import torch.nn.functional as F | |
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Union | |
from APadapter.ap_adapter.attention_processor import AttnProcessor2_0, IPAttnProcessor2_0 | |
import random | |
import os | |
import scipy | |
import safetensors | |
import numpy as np | |
import torch | |
from transformers import ( | |
ClapFeatureExtractor, | |
ClapModel, | |
GPT2Model, | |
RobertaTokenizer, | |
RobertaTokenizerFast, | |
SpeechT5HifiGan, | |
T5EncoderModel, | |
T5Tokenizer, | |
T5TokenizerFast, | |
) | |
from diffusers.loaders import AttnProcsLayers | |
from diffusers import AutoencoderKL | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
is_accelerate_available, | |
is_accelerate_version, | |
is_librosa_available, | |
logging, | |
replace_example_docstring, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.pipelines.pipeline_utils import AudioPipelineOutput, DiffusionPipeline | |
from .modeling_audioldm2 import AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel | |
from diffusers.loaders import TextualInversionLoaderMixin | |
from tqdm import tqdm # for progress bar | |
from utils.lora_utils_successed_ver1 import train_lora, load_lora, wav_to_mel | |
from utils.model_utils import slerp, do_replace_attn | |
from utils.alpha_scheduler import AlphaScheduler | |
from audioldm.utils import default_audioldm_config | |
from audioldm.audio import TacotronSTFT, read_wav_file | |
from audioldm.audio.tools import get_mel_from_wav, _pad_spec, normalize_wav, pad_wav | |
if is_librosa_available(): | |
import librosa | |
import warnings | |
import matplotlib.pyplot as plt | |
from huggingface_hub import hf_hub_download | |
from .pipeline_audioldm2 import AudioLDM2Pipeline | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
pipeline_trained = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2-large", torch_dtype=torch.float32) | |
pipeline_trained = pipeline_trained.to(DEVICE) | |
layer_num = 0 | |
cross = [None, None, 768, 768, 1024, 1024, None, None] | |
unet = pipeline_trained.unet | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = AttnProcessor2_0() | |
else: | |
cross_attention_dim = cross[layer_num % 8] | |
layer_num += 1 | |
if cross_attention_dim == 768: | |
attn_procs[name] = IPAttnProcessor2_0( | |
hidden_size=hidden_size, | |
name=name, | |
cross_attention_dim=cross_attention_dim, | |
scale=0.5, | |
num_tokens=8, | |
do_copy=False | |
).to(DEVICE, dtype=torch.float32) | |
else: | |
attn_procs[name] = AttnProcessor2_0() | |
adapter_weight = hf_hub_download( | |
repo_id="DennisHung/Pre-trained_AudioMAE_weights", | |
filename="pytorch_model.bin", | |
) | |
state_dict = torch.load(adapter_weight, map_location=DEVICE) | |
for name, processor in attn_procs.items(): | |
if hasattr(processor, 'to_v_ip') or hasattr(processor, 'to_k_ip'): | |
weight_name_v = name + ".to_v_ip.weight" | |
weight_name_k = name + ".to_k_ip.weight" | |
processor.to_v_ip.weight = torch.nn.Parameter(state_dict[weight_name_v].half()) | |
processor.to_k_ip.weight = torch.nn.Parameter(state_dict[weight_name_k].half()) | |
unet.set_attn_processor(attn_procs) | |
unet.to(DEVICE, dtype=torch.float32) | |
def visualize_mel_spectrogram(mel_spect_tensor, output_path=None): | |
mel_spect_array = mel_spect_tensor.squeeze().transpose(1, 0).detach().cpu().numpy() | |
plt.figure(figsize=(10, 5)) | |
plt.imshow(mel_spect_array, aspect='auto', origin='lower', cmap='magma') | |
plt.colorbar(label="Log-Mel Energy") | |
plt.title("Mel-Spectrogram") | |
plt.xlabel("Time") | |
plt.ylabel("Mel Frequency Bins") | |
plt.tight_layout() | |
if output_path: | |
plt.savefig(output_path, dpi=300) | |
print(f"Mel-spectrogram saved to {output_path}") | |
else: | |
plt.show() | |
warnings.filterwarnings("ignore", category=FutureWarning) | |
warnings.filterwarnings("ignore", category=UserWarning) | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class StoreProcessor(): | |
def __init__(self, original_processor, value_dict, name): | |
self.original_processor = original_processor | |
self.value_dict = value_dict | |
self.name = name | |
self.value_dict[self.name] = dict() | |
self.id = 0 | |
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs): | |
# Is self attention | |
if encoder_hidden_states is None: | |
# 將 hidden_states 存入 value_dict 中,名稱為 self.name | |
# 如果輸入沒有 encoder_hidden_states,表示是自注意力層,則將輸入的 hidden_states 儲存在 value_dict 中。 | |
# print(f'In StoreProcessor: {self.name} {self.id}') | |
self.value_dict[self.name][self.id] = hidden_states.detach() | |
self.id += 1 | |
# 調用原始處理器,執行正常的注意力操作 | |
res = self.original_processor(attn, hidden_states, *args, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**kwargs) | |
return res | |
class LoadProcessor(): | |
def __init__(self, original_processor, name, aud1_dict, aud2_dict, alpha, beta=0, lamd=0.6): | |
super().__init__() | |
self.original_processor = original_processor | |
self.name = name | |
self.aud1_dict = aud1_dict | |
self.aud2_dict = aud2_dict | |
self.alpha = alpha | |
self.beta = beta | |
self.lamd = lamd | |
self.id = 0 | |
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs): | |
# Is self attention | |
# 判斷是否是自注意力(self-attention) | |
if encoder_hidden_states is None: | |
# 如果當前索引小於 10 倍的 self.lamd,使用自定義的混合邏輯 | |
if self.id < 10 * self.lamd: | |
map0 = self.aud1_dict[self.name][self.id] | |
map1 = self.aud2_dict[self.name][self.id] | |
cross_map = self.beta * hidden_states + \ | |
(1 - self.beta) * ((1 - self.alpha) * map0 + self.alpha * map1) | |
# 調用原始處理器,將 cross_map 作為 encoder_hidden_states 傳入 | |
res = self.original_processor(attn, hidden_states, *args, | |
encoder_hidden_states=cross_map, | |
attention_mask=attention_mask, | |
**kwargs) | |
else: | |
# 否則,使用原始的 encoder_hidden_states(可能為 None) | |
res = self.original_processor(attn, hidden_states, *args, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**kwargs) | |
self.id += 1 | |
# 如果索引到達 self.aud1_dict[self.name] 的長度,重置索引為 0 | |
if self.id == len(self.aud1_dict[self.name]): | |
self.id = 0 | |
else: | |
# 如果是跨注意力(encoder_hidden_states 不為 None),直接使用原始處理器 | |
res = self.original_processor(attn, hidden_states, *args, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**kwargs) | |
return res | |
def prepare_inputs_for_generation( | |
inputs_embeds, | |
attention_mask=None, | |
past_key_values=None, | |
**kwargs,): | |
if past_key_values is not None: | |
# only last token for inputs_embeds if past is defined in kwargs | |
inputs_embeds = inputs_embeds[:, -1:] | |
return { | |
"inputs_embeds": inputs_embeds, | |
"attention_mask": attention_mask, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
} | |
class AudioLDM2MorphPipeline(DiffusionPipeline,TextualInversionLoaderMixin): | |
r""" | |
Pipeline for text-to-audio generation using AudioLDM2. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
text_encoder ([`~transformers.ClapModel`]): | |
First frozen text-encoder. AudioLDM2 uses the joint audio-text embedding model | |
[CLAP](https://huggingface.co/docs/transformers/model_doc/clap#transformers.CLAPTextModelWithProjection), | |
specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. The | |
text branch is used to encode the text prompt to a prompt embedding. The full audio-text model is used to | |
rank generated waveforms against the text prompt by computing similarity scores. | |
text_encoder_2 ([`~transformers.T5EncoderModel`]): | |
Second frozen text-encoder. AudioLDM2 uses the encoder of | |
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
[google/flan-t5-large](https://huggingface.co/google/flan-t5-large) variant. | |
projection_model ([`AudioLDM2ProjectionModel`]): | |
A trained model used to linearly project the hidden-states from the first and second text encoder models | |
and insert learned SOS and EOS token embeddings. The projected hidden-states from the two text encoders are | |
concatenated to give the input to the language model. | |
language_model ([`~transformers.GPT2Model`]): | |
An auto-regressive language model used to generate a sequence of hidden-states conditioned on the projected | |
outputs from the two text encoders. | |
tokenizer ([`~transformers.RobertaTokenizer`]): | |
Tokenizer to tokenize text for the first frozen text-encoder. | |
tokenizer_2 ([`~transformers.T5Tokenizer`]): | |
Tokenizer to tokenize text for the second frozen text-encoder. | |
feature_extractor ([`~transformers.ClapFeatureExtractor`]): | |
Feature extractor to pre-process generated audio waveforms to log-mel spectrograms for automatic scoring. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded audio latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
vocoder ([`~transformers.SpeechT5HifiGan`]): | |
Vocoder of class `SpeechT5HifiGan` to convert the mel-spectrogram latents to the final audio waveform. | |
""" | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: ClapModel, | |
text_encoder_2: T5EncoderModel, | |
projection_model: AudioLDM2ProjectionModel, | |
language_model: GPT2Model, | |
tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast], | |
tokenizer_2: Union[T5Tokenizer, T5TokenizerFast], | |
feature_extractor: ClapFeatureExtractor, | |
unet: AudioLDM2UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
vocoder: SpeechT5HifiGan, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
text_encoder_2=text_encoder_2, | |
projection_model=projection_model, | |
language_model=language_model, | |
tokenizer=tokenizer, | |
tokenizer_2=tokenizer_2, | |
feature_extractor=feature_extractor, | |
unet=unet, | |
scheduler=scheduler, | |
vocoder=vocoder, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.aud1_dict = dict() | |
self.aud2_dict = dict() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
from accelerate import cpu_offload_with_hook | |
else: | |
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
device = torch.device(f"cuda:{gpu_id}") | |
if self.device.type != "cpu": | |
self.to("cpu", silence_dtype_warnings=True) | |
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
model_sequence = [ | |
self.text_encoder.text_model, | |
self.text_encoder.text_projection, | |
self.text_encoder_2, | |
self.projection_model, | |
self.language_model, | |
self.unet, | |
self.vae, | |
self.vocoder, | |
self.text_encoder, | |
] | |
hook = None | |
for cpu_offloaded_model in model_sequence: | |
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
# We'll offload the last model manually. | |
self.final_offload_hook = hook | |
def generate_language_model( | |
self, | |
inputs_embeds: torch.Tensor = None, | |
max_new_tokens: int = 512, | |
**model_kwargs, | |
): | |
""" | |
Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs. | |
Parameters: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
The sequence used as a prompt for the generation. | |
max_new_tokens (`int`): | |
Number of new tokens to generate. | |
model_kwargs (`Dict[str, Any]`, *optional*): | |
Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward` | |
function of the model. | |
Return: | |
`inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
The sequence of generated hidden-states. | |
""" | |
max_new_tokens = max_new_tokens if max_new_tokens is not None else self.language_model.config.max_new_tokens | |
model_kwargs = self.language_model._get_initial_cache_position(inputs_embeds, model_kwargs) | |
for _ in range(max_new_tokens): | |
# prepare model inputs | |
model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs) | |
# forward pass to get next hidden states | |
output = self.language_model(**model_inputs, return_dict=True) | |
next_hidden_states = output.last_hidden_state | |
# Update the model input | |
inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1) | |
# Update generated hidden states, model inputs, and length for next step | |
model_kwargs = self.language_model._update_model_kwargs_for_generation(output, model_kwargs) | |
return inputs_embeds[:, -max_new_tokens:, :] | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_waveforms_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
generated_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
negative_attention_mask: Optional[torch.LongTensor] = None, | |
max_new_tokens: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device (`torch.device`): | |
torch device | |
num_waveforms_per_prompt (`int`): | |
number of waveforms that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the audio generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-computed text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, *e.g.* | |
prompt weighting. If not provided, text embeddings will be computed from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-computed negative text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, | |
*e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from | |
`negative_prompt` input argument. | |
generated_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs, | |
*e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input | |
argument. | |
negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text | |
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from | |
`negative_prompt` input argument. | |
attention_mask (`torch.LongTensor`, *optional*): | |
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will | |
be computed from `prompt` input argument. | |
negative_attention_mask (`torch.LongTensor`, *optional*): | |
Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention | |
mask will be computed from `negative_prompt` input argument. | |
max_new_tokens (`int`, *optional*, defaults to None): | |
The number of new tokens to generate with the GPT2 language model. | |
Returns: | |
prompt_embeds (`torch.FloatTensor`): | |
Text embeddings from the Flan T5 model. | |
attention_mask (`torch.LongTensor`): | |
Attention mask to be applied to the `prompt_embeds`. | |
generated_prompt_embeds (`torch.FloatTensor`): | |
Text embeddings generated from the GPT2 langauge model. | |
Example: | |
```python | |
>>> import scipy | |
>>> import torch | |
>>> from diffusers import AudioLDM2Pipeline | |
>>> repo_id = "cvssp/audioldm2" | |
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16) | |
>>> pipe = pipe.to("cuda") | |
>>> # Get text embedding vectors | |
>>> prompt_embeds, attention_mask, generated_prompt_embeds = pipe.encode_prompt( | |
... prompt="Techno music with a strong, upbeat tempo and high melodic riffs", | |
... device="cuda", | |
... do_classifier_free_guidance=True, | |
... ) | |
>>> # Pass text embeddings to pipeline for text-conditional audio generation | |
>>> audio = pipe( | |
... prompt_embeds=prompt_embeds, | |
... attention_mask=attention_mask, | |
... generated_prompt_embeds=generated_prompt_embeds, | |
... num_inference_steps=200, | |
... audio_length_in_s=10.0, | |
... ).audios[0] | |
>>> # save generated audio sample | |
>>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio) | |
```""" | |
# print("prompt",prompt) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# Define tokenizers and text encoders | |
tokenizers = [self.tokenizer, self.tokenizer_2] | |
text_encoders = [self.text_encoder, self.text_encoder_2] | |
if prompt_embeds is None: | |
prompt_embeds_list = [] | |
attention_mask_list = [] | |
for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length" if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) else True, | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
attention_mask = text_inputs.attention_mask | |
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
f"The following part of your input was truncated because {text_encoder.config.model_type} can " | |
f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
text_input_ids = text_input_ids.to(device) | |
attention_mask = attention_mask.to(device) | |
if text_encoder.config.model_type == "clap": | |
prompt_embeds = text_encoder.get_text_features( | |
text_input_ids, | |
attention_mask=attention_mask, | |
) | |
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size) | |
prompt_embeds = prompt_embeds[:, None, :] | |
# make sure that we attend to this single hidden-state | |
attention_mask = attention_mask.new_ones((batch_size, 1)) | |
else: | |
prompt_embeds = text_encoder( | |
text_input_ids, | |
attention_mask=attention_mask, | |
) | |
prompt_embeds = prompt_embeds[0] | |
prompt_embeds_list.append(prompt_embeds) | |
attention_mask_list.append(attention_mask) | |
projection_output = self.projection_model( | |
hidden_states=prompt_embeds_list[0], | |
hidden_states_1=prompt_embeds_list[1], | |
attention_mask=attention_mask_list[0], | |
attention_mask_1=attention_mask_list[1], | |
) | |
projected_prompt_embeds = projection_output.hidden_states | |
projected_attention_mask = projection_output.attention_mask | |
generated_prompt_embeds = self.generate_language_model( | |
projected_prompt_embeds, | |
attention_mask=projected_attention_mask, | |
max_new_tokens=max_new_tokens, | |
) | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
attention_mask = ( | |
attention_mask.to(device=device) | |
if attention_mask is not None | |
else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device) | |
) | |
generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device) | |
bs_embed, seq_len, hidden_size = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size) | |
# duplicate attention mask for each generation per prompt | |
attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt) | |
attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len) | |
bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape | |
# duplicate generated embeddings for each generation per prompt, using mps friendly method | |
generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) | |
generated_prompt_embeds = generated_prompt_embeds.view( | |
bs_embed * num_waveforms_per_prompt, seq_len, hidden_size | |
) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
negative_prompt_embeds_list = [] | |
negative_attention_mask_list = [] | |
max_length = prompt_embeds.shape[1] | |
for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
uncond_input = tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=tokenizer.model_max_length | |
if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) | |
else max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
uncond_input_ids = uncond_input.input_ids.to(device) | |
negative_attention_mask = uncond_input.attention_mask.to(device) | |
if text_encoder.config.model_type == "clap": | |
negative_prompt_embeds = text_encoder.get_text_features( | |
uncond_input_ids, | |
attention_mask=negative_attention_mask, | |
) | |
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size) | |
negative_prompt_embeds = negative_prompt_embeds[:, None, :] | |
# make sure that we attend to this single hidden-state | |
negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1)) | |
else: | |
negative_prompt_embeds = text_encoder( | |
uncond_input_ids, | |
attention_mask=negative_attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
negative_prompt_embeds_list.append(negative_prompt_embeds) | |
negative_attention_mask_list.append(negative_attention_mask) | |
projection_output = self.projection_model( | |
hidden_states=negative_prompt_embeds_list[0], | |
hidden_states_1=negative_prompt_embeds_list[1], | |
attention_mask=negative_attention_mask_list[0], | |
attention_mask_1=negative_attention_mask_list[1], | |
) | |
negative_projected_prompt_embeds = projection_output.hidden_states | |
negative_projected_attention_mask = projection_output.attention_mask | |
negative_generated_prompt_embeds = self.generate_language_model( | |
negative_projected_prompt_embeds, | |
attention_mask=negative_projected_attention_mask, | |
max_new_tokens=max_new_tokens, | |
) | |
if do_classifier_free_guidance: | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
negative_attention_mask = ( | |
negative_attention_mask.to(device=device) | |
if negative_attention_mask is not None | |
else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device) | |
) | |
negative_generated_prompt_embeds = negative_generated_prompt_embeds.to( | |
dtype=self.language_model.dtype, device=device | |
) | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1) | |
# duplicate unconditional attention mask for each generation per prompt | |
negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt) | |
negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len) | |
# duplicate unconditional generated embeddings for each generation per prompt | |
seq_len = negative_generated_prompt_embeds.shape[1] | |
negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) | |
negative_generated_prompt_embeds = negative_generated_prompt_embeds.view( | |
batch_size * num_waveforms_per_prompt, seq_len, -1 | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
attention_mask = torch.cat([negative_attention_mask, attention_mask]) | |
generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds]) | |
return prompt_embeds, attention_mask, generated_prompt_embeds | |
# Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.mel_spectrogram_to_waveform | |
def mel_spectrogram_to_waveform(self, mel_spectrogram): | |
if mel_spectrogram.dim() == 4: | |
mel_spectrogram = mel_spectrogram.squeeze(1) | |
waveform = self.vocoder(mel_spectrogram) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
waveform = waveform.cpu().float() | |
return waveform | |
def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype): | |
if not is_librosa_available(): | |
logger.info( | |
"Automatic scoring of the generated audio waveforms against the input prompt text requires the " | |
"`librosa` package to resample the generated waveforms. Returning the audios in the order they were " | |
"generated. To enable automatic scoring, install `librosa` with: `pip install librosa`." | |
) | |
return audio | |
inputs = self.tokenizer(text, return_tensors="pt", padding=True) | |
resampled_audio = librosa.resample( | |
audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate | |
) | |
inputs["input_features"] = self.feature_extractor( | |
list(resampled_audio), return_tensors="pt", sampling_rate=self.feature_extractor.sampling_rate | |
).input_features.type(dtype) | |
inputs = inputs.to(device) | |
# compute the audio-text similarity score using the CLAP model | |
logits_per_text = self.text_encoder(**inputs).logits_per_text | |
# sort by the highest matching generations per prompt | |
indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt] | |
audio = torch.index_select(audio, 0, indices.reshape(-1).cpu()) | |
return audio | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
audio_length_in_s, | |
vocoder_upsample_factor, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
generated_prompt_embeds=None, | |
negative_generated_prompt_embeds=None, | |
attention_mask=None, | |
negative_attention_mask=None,): | |
min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor | |
if audio_length_in_s < min_audio_length_in_s: | |
raise ValueError( | |
f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but " | |
f"is {audio_length_in_s}." | |
) | |
if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0: | |
raise ValueError( | |
f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the " | |
f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of " | |
f"{self.vae_scale_factor}." | |
) | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and (prompt_embeds is None or generated_prompt_embeds is None): | |
raise ValueError( | |
"Provide either `prompt`, or `prompt_embeds` and `generated_prompt_embeds`. Cannot leave " | |
"`prompt` undefined without specifying both `prompt_embeds` and `generated_prompt_embeds`." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
elif negative_prompt_embeds is not None and negative_generated_prompt_embeds is None: | |
raise ValueError( | |
"Cannot forward `negative_prompt_embeds` without `negative_generated_prompt_embeds`. Ensure that" | |
"both arguments are specified" | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]: | |
raise ValueError( | |
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:" | |
f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}" | |
) | |
if generated_prompt_embeds is not None and negative_generated_prompt_embeds is not None: | |
if generated_prompt_embeds.shape != negative_generated_prompt_embeds.shape: | |
raise ValueError( | |
"`generated_prompt_embeds` and `negative_generated_prompt_embeds` must have the same shape when " | |
f"passed directly, but got: `generated_prompt_embeds` {generated_prompt_embeds.shape} != " | |
f"`negative_generated_prompt_embeds` {negative_generated_prompt_embeds.shape}." | |
) | |
if ( | |
negative_attention_mask is not None | |
and negative_attention_mask.shape != negative_prompt_embeds.shape[:2] | |
): | |
raise ValueError( | |
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:" | |
f"`attention_mask: {negative_attention_mask.shape} != `prompt_embeds` {negative_prompt_embeds.shape}" | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim | |
def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
height // self.vae_scale_factor, | |
self.vocoder.config.model_in_dim // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def pre_check(self, audio_length_in_s, prompt, callback_steps, negative_prompt): | |
""" | |
Step 0: Convert audio input length from seconds to spectrogram height | |
Step 1. Check inputs. Raise error if not correct | |
""" | |
vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate | |
if audio_length_in_s is None: | |
audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor | |
height = int(audio_length_in_s / vocoder_upsample_factor) | |
original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate) | |
if height % self.vae_scale_factor != 0: | |
height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor | |
logger.info( | |
f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} " | |
f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the " | |
f"denoising process." | |
) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
audio_length_in_s, | |
vocoder_upsample_factor, | |
callback_steps, | |
negative_prompt, | |
) | |
return height, original_waveform_length | |
def encode_prompt_for_2_sources(self, prompt_1, prompt_2, negative_prompt_1, negative_prompt_2, max_new_tokens, device, num_waveforms_per_prompt, do_classifier_free_guidance): | |
prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1 = self.encode_prompt( | |
prompt_1, | |
device, | |
num_waveforms_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt_1, | |
max_new_tokens=max_new_tokens, | |
) | |
prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2 = self.encode_prompt( | |
prompt_2, | |
device, | |
num_waveforms_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt_2, | |
max_new_tokens=max_new_tokens, | |
) | |
return [prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1], [prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2] | |
def process_encoded_prompt(self, encoded_prompt, audio_file, time_pooling, freq_pooling): | |
prompt_embeds, attention_mask, generated_prompt_embeds = encoded_prompt | |
waveform, sr = torchaudio.load(audio_file) | |
fbank = torch.zeros((1024, 128)) | |
ta_kaldi_fbank = extract_kaldi_fbank_feature(waveform, sr, fbank) | |
# print("ta_kaldi_fbank.shape",ta_kaldi_fbank.shape) | |
mel_spect_tensor = ta_kaldi_fbank.unsqueeze(0) | |
model = AudioMAEConditionCTPoolRand().to(next(self.unet.parameters()).device) | |
model.eval() | |
LOA_embed = model(mel_spect_tensor, time_pool=time_pooling, freq_pool=freq_pooling) | |
uncond_LOA_embed = model(torch.zeros_like(mel_spect_tensor), time_pool=time_pooling, freq_pool=freq_pooling) | |
LOA_embeds = LOA_embed[0] | |
uncond_LOA_embeds = uncond_LOA_embed[0] | |
bs_embed, seq_len, _ = LOA_embeds.shape | |
num = prompt_embeds.shape[0] // 2 | |
LOA_embeds = LOA_embeds.view(bs_embed , seq_len, -1) | |
LOA_embeds = LOA_embeds.repeat(num, 1, 1) | |
uncond_LOA_embeds = uncond_LOA_embeds.view(bs_embed , seq_len, -1) | |
uncond_LOA_embeds = uncond_LOA_embeds.repeat(num, 1, 1) | |
negative_g, g = generated_prompt_embeds.chunk(2) | |
uncond = torch.cat([negative_g, uncond_LOA_embeds], dim=1) | |
cond = torch.cat([g, LOA_embeds], dim=1) | |
generated_prompt_embeds = torch.cat([uncond, cond], dim=0) | |
model_dtype = next(self.unet.parameters()).dtype | |
# Convert your tensor to the same dtype as the model | |
generated_prompt_embeds = generated_prompt_embeds.to(model_dtype) | |
return prompt_embeds, attention_mask, generated_prompt_embeds | |
def aud2latent(self, audio_path, audio_length_in_s): | |
DEVICE = torch.device( | |
"cuda") if torch.cuda.is_available() else torch.device("cpu") | |
# waveform, sr = torchaudio.load(audio_path) | |
# fbank = torch.zeros((height, 64)) | |
# ta_kaldi_fbank = extract_kaldi_fbank_feature(waveform, sr, fbank, num_mels=64) | |
# mel_spect_tensor = ta_kaldi_fbank.unsqueeze(0).unsqueeze(0) | |
mel_spect_tensor = wav_to_mel(audio_path, duration=audio_length_in_s).unsqueeze(0) | |
output_path = audio_path.replace('.wav', '_fbank.png') | |
visualize_mel_spectrogram(mel_spect_tensor, output_path) | |
mel_spect_tensor = mel_spect_tensor.to(next(self.vae.parameters()).dtype) | |
# print(f'mel_spect_tensor dtype: {mel_spect_tensor.dtype}') | |
# print(f'self.vae dtype: {next(self.vae.parameters()).dtype}') | |
latents = self.vae.encode(mel_spect_tensor.to(DEVICE))['latent_dist'].mean | |
return latents | |
def ddim_inversion(self, start_latents, prompt_embeds, attention_mask, generated_prompt_embeds, guidance_scale,num_inference_steps): | |
start_step = 0 | |
num_inference_steps = num_inference_steps | |
device = start_latents.device | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
start_latents *= self.scheduler.init_noise_sigma | |
latents = start_latents.clone() | |
for i in tqdm(range(start_step, num_inference_steps)): | |
t = self.scheduler.timesteps[i] | |
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1. else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=generated_prompt_embeds, encoder_hidden_states_1=prompt_embeds, encoder_attention_mask_1=attention_mask).sample | |
if guidance_scale > 1.: | |
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0) | |
noise_pred = noise_pred_uncon + guidance_scale * (noise_pred_con - noise_pred_uncon) | |
latents = self.scheduler.step(noise_pred, t, latents).prev_sample | |
return latents | |
def generate_morphing_prompt(self, prompt_1, prompt_2, alpha): | |
closer_prompt = prompt_1 if alpha <= 0.5 else prompt_2 | |
prompt = ( | |
f"A musical performance morphing between '{prompt_1}' and '{prompt_2}'. " | |
f"The sound is closer to '{closer_prompt}' with an interpolation factor of alpha={alpha:.2f}, " | |
f"where alpha=0 represents fully the {prompt_1} and alpha=1 represents fully {prompt_2}." | |
) | |
return prompt | |
def cal_latent(self,audio_length_in_s,time_pooling, freq_pooling,num_inference_steps, guidance_scale, aud_noise_1, aud_noise_2, prompt_1, prompt_2, | |
prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1, prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2, | |
alpha, original_processor,attn_processor_dict, use_morph_prompt, morphing_with_lora): | |
latents = slerp(aud_noise_1, aud_noise_2, alpha, self.use_adain) | |
if not use_morph_prompt: | |
max_length = max(prompt_embeds_1.shape[1], prompt_embeds_2.shape[1]) | |
if prompt_embeds_1.shape[1] < max_length: | |
pad_size = max_length - prompt_embeds_1.shape[1] | |
padding = torch.zeros( | |
(prompt_embeds_1.shape[0], pad_size, prompt_embeds_1.shape[2]), | |
device=prompt_embeds_1.device, | |
dtype=prompt_embeds_1.dtype | |
) | |
prompt_embeds_1 = torch.cat([prompt_embeds_1, padding], dim=1) | |
if prompt_embeds_2.shape[1] < max_length: | |
pad_size = max_length - prompt_embeds_2.shape[1] | |
padding = torch.zeros( | |
(prompt_embeds_2.shape[0], pad_size, prompt_embeds_2.shape[2]), | |
device=prompt_embeds_2.device, | |
dtype=prompt_embeds_2.dtype | |
) | |
prompt_embeds_2 = torch.cat([prompt_embeds_2, padding], dim=1) | |
if attention_mask_1.shape[1] < max_length: | |
pad_size = max_length - attention_mask_1.shape[1] | |
padding = torch.zeros( | |
(attention_mask_1.shape[0], pad_size), | |
device=attention_mask_1.device, | |
dtype=attention_mask_1.dtype | |
) | |
attention_mask_1 = torch.cat([attention_mask_1, padding], dim=1) | |
if attention_mask_2.shape[1] < max_length: | |
pad_size = max_length - attention_mask_2.shape[1] | |
padding = torch.zeros( | |
(attention_mask_2.shape[0], pad_size), | |
device=attention_mask_2.device, | |
dtype=attention_mask_2.dtype | |
) | |
attention_mask_2 = torch.cat([attention_mask_2, padding], dim=1) | |
prompt_embeds = (1 - alpha) * prompt_embeds_1 + \ | |
alpha * prompt_embeds_2 | |
generated_prompt_embeds = (1 - alpha) * generated_prompt_embeds_1 + \ | |
alpha * generated_prompt_embeds_2 | |
attention_mask = attention_mask_1 if alpha < 0.5 else attention_mask_2 | |
# attention_mask = attention_mask_1 & attention_mask_2 | |
# attention_mask = attention_mask_1 | attention_mask_2 | |
# attention_mask = (1 - alpha) * attention_mask_1 + alpha * attention_mask_2 | |
# attention_mask = (attention_mask > 0.5).long() | |
if morphing_with_lora: | |
pipeline_trained.unet.set_attn_processor(attn_processor_dict) | |
waveform = pipeline_trained( | |
time_pooling= time_pooling, | |
freq_pooling= freq_pooling, | |
latents = latents, | |
num_inference_steps= num_inference_steps, | |
guidance_scale= guidance_scale, | |
num_waveforms_per_prompt= 1, | |
audio_length_in_s=audio_length_in_s, | |
prompt_embeds = prompt_embeds.chunk(2)[1], | |
negative_prompt_embeds = prompt_embeds.chunk(2)[0], | |
generated_prompt_embeds = generated_prompt_embeds.chunk(2)[1], | |
negative_generated_prompt_embeds = generated_prompt_embeds.chunk(2)[0], | |
attention_mask = attention_mask.chunk(2)[1], | |
negative_attention_mask = attention_mask.chunk(2)[0], | |
).audios[0] | |
if morphing_with_lora: | |
pipeline_trained.unet.set_attn_processor(original_processor) | |
else: | |
latent_model_input = latents | |
morphing_prompt = self.generate_morphing_prompt(prompt_1, prompt_2, alpha) | |
if morphing_with_lora: | |
pipeline_trained.unet.set_attn_processor(attn_processor_dict) | |
waveform = pipeline_trained( | |
time_pooling= time_pooling, | |
freq_pooling= freq_pooling, | |
latents = latent_model_input, | |
num_inference_steps= num_inference_steps, | |
guidance_scale= guidance_scale, | |
num_waveforms_per_prompt= 1, | |
audio_length_in_s=audio_length_in_s, | |
prompt= morphing_prompt, | |
negative_prompt= 'Low quality', | |
).audios[0] | |
if morphing_with_lora: | |
pipeline_trained.unet.set_attn_processor(original_processor) | |
return waveform | |
def __call__( | |
self, | |
audio_file = None, | |
audio_file2 = None, | |
save_lora_dir = "./lora", | |
load_lora_path_1 = None, | |
load_lora_path_2 = None, | |
lora_steps = 200, | |
lora_lr = 2e-4, | |
lora_rank = 16, | |
time_pooling = 8, | |
freq_pooling = 8, | |
audio_length_in_s: Optional[float] = None, | |
prompt_1: Union[str, List[str]] = None, | |
prompt_2: Union[str, List[str]] = None, | |
negative_prompt_1: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
use_lora: bool = True, | |
use_adain: bool = True, | |
use_reschedule: bool = True, | |
output_path: Optional[str] = None, | |
num_inference_steps: int = 200, | |
guidance_scale: float = 7.5, | |
num_waveforms_per_prompt: Optional[int] = 1, | |
attn_beta=0, | |
lamd=0.6, | |
fix_lora=None, | |
save_intermediates=True, | |
num_frames=50, | |
max_new_tokens: Optional[int] = None, | |
callback_steps: Optional[int] = 1, | |
noisy_latent_with_lora=False, | |
morphing_with_lora=False, | |
use_morph_prompt=False, | |
): | |
# 0. Load the pre-trained AP-adapter model | |
layer_num = 0 | |
cross = [None, None, 768, 768, 1024, 1024, None, None] | |
attn_procs = {} | |
for name in self.unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = self.unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = self.unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = AttnProcessor2_0() | |
else: | |
cross_attention_dim = cross[layer_num % 8] | |
layer_num += 1 | |
if cross_attention_dim == 768: | |
attn_procs[name] = IPAttnProcessor2_0( | |
hidden_size=hidden_size, | |
name=name, | |
cross_attention_dim=cross_attention_dim, | |
scale=0.5, | |
num_tokens=8, | |
do_copy=False | |
).to(DEVICE, dtype=torch.float32) | |
else: | |
attn_procs[name] = AttnProcessor2_0() | |
state_dict = torch.load('/Data/home/Dennis/DeepMIR-2024/Final_Project/AP-adapter/pytorch_model.bin', map_location="cuda") | |
for name, processor in attn_procs.items(): | |
if hasattr(processor, 'to_v_ip') or hasattr(processor, 'to_k_ip'): | |
weight_name_v = name + ".to_v_ip.weight" | |
weight_name_k = name + ".to_k_ip.weight" | |
processor.to_v_ip.weight = torch.nn.Parameter(state_dict[weight_name_v].half()) | |
processor.to_k_ip.weight = torch.nn.Parameter(state_dict[weight_name_k].half()) | |
self.unet.set_attn_processor(attn_procs) | |
self.vae= self.vae.to(DEVICE, dtype=torch.float32) | |
self.unet = self.unet.to(DEVICE, dtype=torch.float32) | |
self.language_model = self.language_model.to(DEVICE, dtype=torch.float32) | |
self.projection_model = self.projection_model.to(DEVICE, dtype=torch.float32) | |
self.vocoder = self.vocoder.to(DEVICE, dtype=torch.float32) | |
self.text_encoder = self.text_encoder.to(DEVICE, dtype=torch.float32) | |
self.text_encoder_2 = self.text_encoder_2.to(DEVICE, dtype=torch.float32) | |
# 1. Pre-check | |
height, original_waveform_length = self.pre_check(audio_length_in_s, prompt_1, callback_steps, negative_prompt_1) | |
_, _ = self.pre_check(audio_length_in_s, prompt_2, callback_steps, negative_prompt_2) | |
# print(f"height: {height}, original_waveform_length: {original_waveform_length}") # height: 1000, original_waveform_length: 160000 | |
# # 2. Define call parameters | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
self.use_lora = use_lora | |
self.use_adain = use_adain | |
self.use_reschedule = use_reschedule | |
self.output_path = output_path | |
if self.use_lora: | |
print("Loading lora...") | |
if not load_lora_path_1: | |
weight_name = f"{output_path.split('/')[-1]}_lora_0.ckpt" | |
load_lora_path_1 = save_lora_dir + "/" + weight_name | |
if not os.path.exists(load_lora_path_1): | |
train_lora(audio_file ,height ,time_pooling ,freq_pooling ,prompt_1, negative_prompt_1, guidance_scale, save_lora_dir, self.tokenizer, self.tokenizer_2, | |
self.text_encoder, self.text_encoder_2, self.language_model, self.projection_model, self.vocoder, | |
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name) | |
print(f"Load from {load_lora_path_1}.") | |
if load_lora_path_1.endswith(".safetensors"): | |
lora_1 = safetensors.torch.load_file( | |
load_lora_path_1, device="cpu") | |
else: | |
lora_1 = torch.load(load_lora_path_1, map_location="cpu") | |
if not load_lora_path_2: | |
weight_name = f"{output_path.split('/')[-1]}_lora_1.ckpt" | |
load_lora_path_2 = save_lora_dir + "/" + weight_name | |
if not os.path.exists(load_lora_path_2): | |
train_lora(audio_file2 ,height,time_pooling ,freq_pooling ,prompt_2, negative_prompt_2, guidance_scale, save_lora_dir, self.tokenizer, self.tokenizer_2, | |
self.text_encoder, self.text_encoder_2, self.language_model, self.projection_model, self.vocoder, | |
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name) | |
print(f"Load from {load_lora_path_2}.") | |
if load_lora_path_2.endswith(".safetensors"): | |
lora_2 = safetensors.torch.load_file( | |
load_lora_path_2, device="cpu") | |
else: | |
lora_2 = torch.load(load_lora_path_2, map_location="cpu") | |
else: | |
lora_1 = lora_2 = None | |
# # 3. Encode input prompt | |
encoded_prompt_1, encoded_prompt_2 = self.encode_prompt_for_2_sources(prompt_1, prompt_2, negative_prompt_1, negative_prompt_2, max_new_tokens, device, num_waveforms_per_prompt, do_classifier_free_guidance) | |
prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1 = self.process_encoded_prompt(encoded_prompt_1, audio_file, time_pooling, freq_pooling) | |
prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2 = self.process_encoded_prompt(encoded_prompt_2, audio_file2, time_pooling, freq_pooling) | |
# 4. Prepare latent variables | |
# For the first audio file | |
original_processor = list(self.unet.attn_processors.values())[0] | |
if noisy_latent_with_lora: | |
self.unet = load_lora(self.unet, lora_1, lora_2, 0) | |
# print(self.unet.attn_processors) | |
# We directly use the latent representation of the audio file for VAE's decoder as the 1st ground truth | |
audio_latent = self.aud2latent(audio_file, audio_length_in_s).to(device) | |
# mel_spectrogram = self.vae.decode(audio_latent).sample | |
# first_audio = self.mel_spectrogram_to_waveform(mel_spectrogram) | |
# first_audio = first_audio[:, :original_waveform_length] | |
# torchaudio.save(f"{self.output_path}/{0:02d}_gt.wav", first_audio, 16000) | |
# aud_noise_1 is the noisy latent representation of the audio file 1 | |
aud_noise_1 = self.ddim_inversion(audio_latent, prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1, guidance_scale, num_inference_steps) | |
# We use the pre-trained model to generate the audio file from the noisy latent representation | |
# waveform = pipeline_trained( | |
# audio_file = audio_file, | |
# time_pooling= 2, | |
# freq_pooling= 2, | |
# prompt= prompt_1, | |
# latents = aud_noise_1, | |
# negative_prompt= negative_prompt_1, | |
# num_inference_steps= 100, | |
# guidance_scale= guidance_scale, | |
# num_waveforms_per_prompt= 1, | |
# audio_length_in_s=10, | |
# ).audios | |
# file_path = os.path.join(self.output_path, f"{0:02d}_gt2.wav") | |
# scipy.io.wavfile.write(file_path, rate=16000, data=waveform[0]) | |
# After reconstructed the audio file 1, we set the original processor back | |
if noisy_latent_with_lora: | |
self.unet.set_attn_processor(original_processor) | |
# print(self.unet.attn_processors) | |
# For the second audio file | |
if noisy_latent_with_lora: | |
self.unet = load_lora(self.unet, lora_1, lora_2, 1) | |
# print(self.unet.attn_processors) | |
# We directly use the latent representation of the audio file for VAE's decoder as the 1st ground truth | |
audio_latent = self.aud2latent(audio_file2, audio_length_in_s) | |
# mel_spectrogram = self.vae.decode(audio_latent).sample | |
# last_audio = self.mel_spectrogram_to_waveform(mel_spectrogram) | |
# last_audio = last_audio[:, :original_waveform_length] | |
# torchaudio.save(f"{self.output_path}/{num_frames-1:02d}_gt.wav", last_audio, 16000) | |
# aud_noise_2 is the noisy latent representation of the audio file 2 | |
aud_noise_2 = self.ddim_inversion(audio_latent, prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2, guidance_scale, num_inference_steps) | |
# waveform = pipeline_trained( | |
# audio_file = audio_file2, | |
# time_pooling= 2, | |
# freq_pooling= 2, | |
# prompt= prompt_2, | |
# latents = aud_noise_2, | |
# negative_prompt= negative_prompt_2, | |
# num_inference_steps= 100, | |
# guidance_scale= guidance_scale, | |
# num_waveforms_per_prompt= 1, | |
# audio_length_in_s=10, | |
# ).audios | |
# file_path = os.path.join(self.output_path, f"{num_frames-1:02d}_gt2.wav") | |
# scipy.io.wavfile.write(file_path, rate=16000, data=waveform[0]) | |
if noisy_latent_with_lora: | |
self.unet.set_attn_processor(original_processor) | |
# print(self.unet.attn_processors) | |
# After reconstructed the audio file 1, we set the original processor back | |
original_processor = list(self.unet.attn_processors.values())[0] | |
def morph(alpha_list, desc): | |
audios = [] | |
# if attn_beta is not None: | |
if self.use_lora: | |
self.unet = load_lora( | |
self.unet, lora_1, lora_2, 0 if fix_lora is None else fix_lora) | |
attn_processor_dict = {} | |
# print(self.unet.attn_processors) | |
for k in self.unet.attn_processors.keys(): | |
# print(k) | |
if do_replace_attn(k): | |
# print(f"Since the key starts with *up*, we replace the processor with StoreProcessor.") | |
if self.use_lora: | |
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k], | |
self.aud1_dict, k) | |
else: | |
attn_processor_dict[k] = StoreProcessor(original_processor, | |
self.aud1_dict, k) | |
else: | |
attn_processor_dict[k] = self.unet.attn_processors[k] | |
# print(attn_processor_dict) | |
# print(attn_processor_dict) | |
# print(self.unet.attn_processors) | |
# self.unet.set_attn_processor(attn_processor_dict) | |
# print(self.unet.attn_processors) | |
first_audio = self.cal_latent( | |
audio_length_in_s, | |
time_pooling, | |
freq_pooling, | |
num_inference_steps, | |
guidance_scale, | |
aud_noise_1, | |
aud_noise_2, | |
prompt_1, | |
prompt_2, | |
prompt_embeds_1, | |
attention_mask_1, | |
generated_prompt_embeds_1, | |
prompt_embeds_2, | |
attention_mask_2, | |
generated_prompt_embeds_2, | |
alpha_list[0], | |
original_processor, | |
attn_processor_dict, | |
use_morph_prompt, | |
morphing_with_lora | |
) | |
self.unet.set_attn_processor(original_processor) | |
file_path = os.path.join(self.output_path, f"{0:02d}.wav") | |
scipy.io.wavfile.write(file_path, rate=16000, data=first_audio) | |
if self.use_lora: | |
self.unet = load_lora( | |
self.unet, lora_1, lora_2, 1 if fix_lora is None else fix_lora) | |
attn_processor_dict = {} | |
for k in self.unet.attn_processors.keys(): | |
if do_replace_attn(k): | |
# print(f"Since the key starts with *up*, we replace the processor with StoreProcessor.") | |
if self.use_lora: | |
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k], | |
self.aud2_dict, k) | |
else: | |
attn_processor_dict[k] = StoreProcessor(original_processor, | |
self.aud2_dict, k) | |
else: | |
attn_processor_dict[k] = self.unet.attn_processors[k] | |
# self.unet.set_attn_processor(attn_processor_dict) | |
last_audio = self.cal_latent( | |
audio_length_in_s, | |
time_pooling, | |
freq_pooling, | |
num_inference_steps, | |
guidance_scale, | |
aud_noise_1, | |
aud_noise_2, | |
prompt_1, | |
prompt_2, | |
prompt_embeds_1, | |
attention_mask_1, | |
generated_prompt_embeds_1, | |
prompt_embeds_2, | |
attention_mask_2, | |
generated_prompt_embeds_2, | |
alpha_list[-1], | |
original_processor, | |
attn_processor_dict, | |
use_morph_prompt, | |
morphing_with_lora | |
) | |
file_path = os.path.join(self.output_path, f"{num_frames-1:02d}.wav") | |
scipy.io.wavfile.write(file_path, rate=16000, data=last_audio) | |
self.unet.set_attn_processor(original_processor) | |
for i in tqdm(range(1, num_frames - 1), desc=desc): | |
alpha = alpha_list[i] | |
if self.use_lora: | |
self.unet = load_lora( | |
self.unet, lora_1, lora_2, alpha if fix_lora is None else fix_lora) | |
attn_processor_dict = {} | |
for k in self.unet.attn_processors.keys(): | |
if do_replace_attn(k): | |
if self.use_lora: | |
attn_processor_dict[k] = LoadProcessor( | |
self.unet.attn_processors[k], k, self.aud1_dict, self.aud2_dict, alpha, attn_beta, lamd) | |
else: | |
attn_processor_dict[k] = LoadProcessor( | |
original_processor, k, self.aud1_dict, self.aud2_dict, alpha, attn_beta, lamd) | |
else: | |
attn_processor_dict[k] = self.unet.attn_processors[k] | |
# self.unet.set_attn_processor(attn_processor_dict) | |
audio = self.cal_latent( | |
audio_length_in_s, | |
time_pooling, | |
freq_pooling, | |
num_inference_steps, | |
guidance_scale, | |
aud_noise_1, | |
aud_noise_2, | |
prompt_1, | |
prompt_2, | |
prompt_embeds_1, | |
attention_mask_1, | |
generated_prompt_embeds_1, | |
prompt_embeds_2, | |
attention_mask_2, | |
generated_prompt_embeds_2, | |
alpha_list[i], | |
original_processor, | |
attn_processor_dict, | |
use_morph_prompt, | |
morphing_with_lora | |
) | |
file_path = os.path.join(self.output_path, f"{i:02d}.wav") | |
scipy.io.wavfile.write(file_path, rate=16000, data=audio) | |
self.unet.set_attn_processor(original_processor) | |
audios.append(audio) | |
audios = [first_audio] + audios + [last_audio] | |
return audios | |
with torch.no_grad(): | |
if self.use_reschedule: | |
alpha_scheduler = AlphaScheduler() | |
alpha_list = list(torch.linspace(0, 1, num_frames)) | |
audios_pt = morph(alpha_list, "Sampling...") | |
audios_pt = [torch.tensor(aud).unsqueeze(0) | |
for aud in audios_pt] | |
alpha_scheduler.from_imgs(audios_pt) | |
alpha_list = alpha_scheduler.get_list() | |
audios = morph(alpha_list, "Reschedule...") | |
else: | |
alpha_list = list(torch.linspace(0, 1, num_frames)) | |
audios = morph(alpha_list, "Sampling...") | |
return audios | |