File size: 1,872 Bytes
fab8bef 29239d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
# Загрузка модели и токенизатора
model_name = "microsoft/DialoGPT-medium"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Создаем pipeline для генерации диалогов
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
def respond(message, history, system_message, max_tokens, temperature, top_p):
# Формируем текст, который будет передан в модель
input_text = system_message + " ".join([f"User: {msg[0]} Assistant: {msg[1]}" for msg in history if msg[0] and msg[1]])
input_text += f"User: {message}"
# Генерация ответа
response = generator(
input_text,
max_length=len(tokenizer.encode(input_text)) + max_tokens,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1,
)
# Извлечение и возврат текста ответа
output_text = response[0]['generated_text'][len(input_text):]
yield output_text.strip()
# Настройка интерфейса Gradio
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="Тебя зовут зевибот. Ты ваще никому ничо не должен.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=1.0, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=1.0, step=0.05, label="Top-p (nucleus sampling)"
),
],
)
if __name__ == "__main__":
demo.launch()
|