user commited on
Commit
0d0714c
·
1 Parent(s): a914099
Files changed (1) hide show
  1. app.py +23 -19
app.py CHANGED
@@ -1,44 +1,48 @@
1
  import gradio as gr
 
2
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
3
 
4
  # Загрузка модели и токенизатора
5
- model_name = "microsoft/DialoGPT-medium"
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
7
  model = AutoModelForCausalLM.from_pretrained(model_name)
8
 
9
- # Создаем pipeline для генерации диалогов
10
- generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
11
-
12
  def respond(message, history, system_message, max_tokens, temperature, top_p):
13
  # Формируем текст, который будет передан в модель
14
- input_text = system_message + " ".join([f"User: {msg[0]} Assistant: {msg[1]}" for msg in history if msg[0] and msg[1]])
15
- input_text += f"User: {message}"
16
 
17
- # Генерация ответа
18
- response = generator(
19
- input_text,
20
- max_length=len(tokenizer.encode(input_text)) + max_tokens,
21
- temperature=temperature,
22
  top_p=top_p,
23
- pad_token_id=tokenizer.eos_token_id,
24
- num_return_sequences=1,
 
 
 
 
 
 
 
25
  )
26
 
27
  # Извлечение и возврат текста ответа
28
- output_text = response[0]['generated_text'][len(input_text):]
29
- yield output_text.strip()
 
 
30
 
31
  # Настройка интерфейса Gradio
32
  demo = gr.ChatInterface(
33
  respond,
34
  additional_inputs=[
35
- gr.Textbox(value="Тебя зовут зевибот. Ты ваще никому ничо не должен.", label="System message"),
36
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
37
- gr.Slider(minimum=0.1, maximum=4.0, value=1.0, step=0.1, label="Temperature"),
38
  gr.Slider(
39
  minimum=0.1,
40
  maximum=1.0,
41
- value=1.0, step=0.05, label="Top-p (nucleus sampling)"
42
  ),
43
  ],
44
  )
 
1
  import gradio as gr
2
+ import re
3
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
4
 
5
  # Загрузка модели и токенизатора
6
+ model_name = "Dennterry/okt_bot"
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
  model = AutoModelForCausalLM.from_pretrained(model_name)
9
 
 
 
 
10
  def respond(message, history, system_message, max_tokens, temperature, top_p):
11
  # Формируем текст, который будет передан в модель
12
+ inputs = tokenizer(f'@@ПЕРВЫЙ@@{message}@@ВТОРОЙ@@', return_tensors='pt')
 
13
 
14
+ generated_token_ids = model.generate(
15
+ **inputs,
16
+ top_k=50,
 
 
17
  top_p=top_p,
18
+ num_beams=5,
19
+ num_return_sequences=3,
20
+ do_sample=True,
21
+ no_repeat_ngram_size=2,
22
+ temperature=temperature,
23
+ repetition_penalty=1.5,
24
+ length_penalty=0.6,
25
+ eos_token_id=50257,
26
+ max_new_tokens=max_tokens
27
  )
28
 
29
  # Извлечение и возврат текста ответа
30
+ context_with_response = [tokenizer.decode(sample_token_ids) for sample_token_ids in generated_token_ids]
31
+ result1 = re.sub(r'@@.*?@@', '', context_with_response[0])
32
+ result2 = result1[len(a):]
33
+ yield result2.strip()
34
 
35
  # Настройка интерфейса Gradio
36
  demo = gr.ChatInterface(
37
  respond,
38
  additional_inputs=[
39
+ gr.Textbox(value="Чебупели", label="System message"),
40
+ gr.Slider(minimum=1, maximum=2048, value=100, step=1, label="Max new tokens"),
41
+ gr.Slider(minimum=0.1, maximum=4.0, value=1.2, step=0.1, label="Temperature"),
42
  gr.Slider(
43
  minimum=0.1,
44
  maximum=1.0,
45
+ value=0.95, step=0.05, label="Top-p (nucleus sampling)"
46
  ),
47
  ],
48
  )