File size: 10,348 Bytes
4697797 c5cb9ba af6d5f7 4697797 0c738cb 4697797 9604304 4697797 0c738cb 9604304 4697797 112fcdf 4697797 015a301 4697797 c5cb9ba 4697797 af6d5f7 c28f323 af6d5f7 c28f323 4697797 c5cb9ba 4697797 0c738cb c5cb9ba 0c738cb c5cb9ba 4697797 c5cb9ba 4697797 c5cb9ba 4697797 c5cb9ba 4697797 112fcdf 312a468 4697797 112fcdf 4697797 c5cb9ba 4697797 fc90453 4697797 bbe286f c5cb9ba bbe286f 4697797 c5cb9ba 4697797 bbe286f 112fcdf bbe286f 112fcdf a8f430e 4697797 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import gradio as gr
import os
import random
import datetime
from utils import *
from pathlib import Path
file_url = "https://storage.googleapis.com/derendering_model/derendering_supp.zip"
filename = "derendering_supp.zip"
# Cache videos to speed up demo
video_cache_dir = Path("./cached_videos")
video_cache_dir.mkdir(exist_ok=True)
download_file(file_url, filename)
unzip_file(filename)
print("Downloaded and unzipped the file.")
diagram = get_svg_content("derendering_supp/derender_diagram.svg")
org = get_svg_content("org/cor.svg")
org_content = f"{org}"
gif_filenames = [
"christians.gif",
"good.gif",
"october.gif",
"welcome.gif",
"you.gif",
"letter.gif",
]
captions = [
"CHRISTIANS",
"Good",
"October",
"WELOME",
"you",
"letter",
]
gif_base64_strings = {
caption: get_base64_encoded_gif(f"gifs/{name}")
for caption, name in zip(captions, gif_filenames)
}
sketches = [
"bird.gif",
"cat.gif",
"coffee.gif",
"penguin.gif",
]
sketches_base64_strings = {
name: get_base64_encoded_gif(f"sketches/{name}") for name in sketches
}
datasets = ["IAM", "IMGUR5K", "HierText"]
models = ["Small-i", "Large-i", "Small-p"]
query_modes = ["d+t", "r+d", "vanilla"]
def pregenerate_videos():
for Dataset in datasets:
for Model in models:
inkml_path_base = f"./derendering_supp/{Model.lower()}_{Dataset}_inkml"
for mode in query_modes:
path = f"./derendering_supp/{Dataset}/images_sample"
if not os.path.exists(path):
continue
samples = os.listdir(path)
selected_samples = random.sample(samples, len(samples) // 3)
for name in tqdm(
selected_samples, desc=f"Generating {Model}-{Dataset}-{mode} videos"
):
example_id = name.strip(".png")
inkml_file = os.path.join(
inkml_path_base, mode, f"{example_id}.inkml"
)
if not os.path.exists(inkml_file):
continue
video_filename = f"{Model}_{Dataset}_{mode}_{example_id}.mp4"
video_filepath = video_cache_dir / video_filename
if not video_filepath.exists():
img_path = os.path.join(path, name)
img = load_and_pad_img_dir(img_path)
ink = inkml_to_ink(inkml_file)
plot_ink_to_video(ink, str(video_filepath), input_image=img)
pregenerate_videos()
def demo(Dataset, Model, Output_Format):
if Model == "Small-i":
inkml_path = f"./derendering_supp/small-i_{Dataset}_inkml"
elif Model == "Small-p":
inkml_path = f"./derendering_supp/small-p_{Dataset}_inkml"
elif Model == "Large-i":
inkml_path = f"./derendering_supp/large-i_{Dataset}_inkml"
now = datetime.datetime.now()
random.seed(now.timestamp())
now = now.strftime("%Y-%m-%d %H:%M:%S")
print(
now,
"Taking sample from dataset:",
Dataset,
"and model:",
Model,
"with output format:",
Output_Format,
)
path = f"./derendering_supp/{Dataset}/images_sample"
samples = os.listdir(path)
# Randomly pick a sample
picked_samples = random.sample(samples, min(1, len(samples)))
query_modes = ["d+t", "r+d", "vanilla"]
plot_title = {"r+d": "Recognized: ", "d+t": "OCR Input: ", "vanilla": ""}
text_outputs = []
img_outputs = []
video_outputs = []
for name in picked_samples:
img_path = os.path.join(path, name)
img = load_and_pad_img_dir(img_path)
for mode in query_modes:
example_id = name.strip(".png")
inkml_file = os.path.join(inkml_path, mode, example_id + ".inkml")
text_field = parse_inkml_annotations(inkml_file)["textField"]
output_text = f"{plot_title[mode]}{text_field}"
text_outputs.append(output_text)
ink = inkml_to_ink(inkml_file)
video_filename = f"{Model}_{Dataset}_{mode}_{example_id}.mp4"
video_filepath = video_cache_dir / video_filename
if Output_Format == "Image+Video":
if not video_filepath.exists():
plot_ink_to_video(ink, str(video_filepath), input_image=img)
print("Cached video at:", video_filepath)
video_outputs.append("./" + str(video_filepath))
else:
video_outputs.append(None)
fig, ax = plt.subplots()
ax.axis("off")
plot_ink(ink, ax, input_image=img)
buf = BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight")
plt.close(fig)
buf.seek(0)
res = Image.open(buf)
img_outputs.append(res)
return (
img,
text_outputs[0],
img_outputs[0],
video_outputs[0],
text_outputs[1],
img_outputs[1],
video_outputs[1],
text_outputs[2],
img_outputs[2],
video_outputs[2],
)
with gr.Blocks() as app:
gr.HTML(org_content)
gr.Markdown(
"# InkSight: Offline-to-Online Handwriting Conversion by Learning to Read and Write"
)
gr.HTML(
"""
<div style="display: flex; align-items: center; margin-bottom: 20px;">
<a href="https://arxiv.org/abs/2402.05804" target="_blank" style="font-size: 16px; background-color: #4CAF50; color: white; padding: 5px 7px; text-decoration: none; border-radius: 2px;">
π Read the Paper
</a>
</div>
"""
)
gr.HTML(f"<div style='margin: 20px 0;'>{diagram}</div>")
gr.Markdown(
"""
π This demo highlights the capabilities of Small-i, Small-p, and Large-i across three public datasets (word-level, with 100 random samples each).<br>
π² Select a model variant and dataset (IAM, IMGUR5K, HierText), then hit 'Sample' to view a randomly selected input alongside its corresponding outputs for all three types of inference.<br>
πΌοΈ Output options: Image or Image+Video. Opting for images yields quicker results, adding videos offers a dynamic view of the digital ink writing process.<br>
"""
)
with gr.Row():
dataset = gr.Dropdown(
["IAM", "IMGUR5K", "HierText"], label="Dataset", value="IAM"
)
model = gr.Dropdown(
["Small-i", "Large-i", "Small-p"],
label="InkSight Model Variant",
value="Small-i",
)
output_format = gr.Dropdown(
["Image", "Image+Video"], label="Output Format", value="Image"
)
im = gr.Image(label="Input Image")
with gr.Row():
d_t_img = gr.Image(label="Derender with Text")
r_d_img = gr.Image(label="Recognize and Derender")
vanilla_img = gr.Image(label="Vanilla")
with gr.Row():
d_t_text = gr.Textbox(
label="OCR recognition input to the model", interactive=False
)
r_d_text = gr.Textbox(label="Recognition from the model", interactive=False)
vanilla_text = gr.Textbox(label="Vanilla", interactive=False)
gr.Markdown(
"To visualize the writing process in video, select *Output format* as **Image+Video**."
)
with gr.Row():
d_t_vid = gr.Video(
label="Derender with Text (Click to stop/play)", autoplay=True
)
r_d_vid = gr.Video(
label="Recognize and Derender (Click to stop/play)", autoplay=True
)
vanilla_vid = gr.Video(label="Vanilla (Click to stop/play)", autoplay=True)
with gr.Row():
btn_sub = gr.Button("Sample")
btn_sub.click(
fn=demo,
inputs=[dataset, model, output_format],
outputs=[
im,
d_t_text,
d_t_img,
d_t_vid,
r_d_text,
r_d_img,
r_d_vid,
vanilla_text,
vanilla_img,
vanilla_vid,
],
)
gr.Markdown("## More Word-level Samples")
html_content = """
<div style="display: flex; justify-content: space-around; flex-wrap: wrap; gap: 0px;">
"""
for caption, base64_string in gif_base64_strings.items():
title = caption
html_content += f"""
<div>
<img src="data:image/gif;base64,{base64_string}" alt="{title}" style="width: 100%; max-width: 200px;">
<p style="text-align: center;">{title}</p>
</div>
"""
html_content += "</div>"
gr.HTML(html_content)
# Sketches
gr.Markdown("## Sketch Samples")
html_content = """
<div style="display: flex; justify-content: space-around; flex-wrap: wrap; gap: 0px;">
"""
for _, base64_string in sketches_base64_strings.items():
html_content += f"""
<div>
<img src="data:image/gif;base64,{base64_string}" style="width: 100%; max-width: 200px;">
</div>
"""
html_content += "</div>"
gr.HTML(html_content)
gr.Markdown("## Scale Up to Full Page")
svg1_content = get_svg_content("full_page/danke.svg")
svg2_content = get_svg_content("full_page/multilingual_demo.svg")
svg3_content = get_svg_content("full_page/unsplash_frame.svg")
svg_html_template = """
<div style="display: block;">
<div>
<div style="margin-bottom: 10px;">{}</div>
<p style="text-align: center;">{}</p>
</div>
<div>
<div style="margin-bottom: 10px;">{}</div>
<p style="text-align: center;">{}</p>
</div>
<div>
<div style="margin-bottom: 10px;">{}</div>
<p style="text-align: center;">{}</p>
</div>
</div>
"""
full_svg_display = svg_html_template.format(
svg1_content,
'Writings on the beach. <a href="https://unsplash.com/photos/text-rG-PerMFjFA">Credit</a>',
svg2_content,
"Multilingual handwriting.",
svg3_content,
"Handwriting in a frame. <a href='https://unsplash.com/photos/white-wooden-framed-white-board-t7fLWMQl2Lw'>Credit</a>",
)
gr.HTML(full_svg_display)
app.launch()
|