File size: 12,837 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "7aa8875d",
   "metadata": {},
   "source": [
    "# Google ADK with LiteLLM\n",
    "\n",
    "Use Google ADK with LiteLLM Python SDK, LiteLLM Proxy.\n",
    "\n",
    "This tutorial shows you how to create intelligent agents using Agent Development Kit (ADK) with support for multiple Large Language Model (LLM) providers through LiteLLM."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a4d249c3",
   "metadata": {},
   "source": [
    "## Overview\n",
    "\n",
    "ADK (Agent Development Kit) allows you to build intelligent agents powered by LLMs. By integrating with LiteLLM, you can:\n",
    "\n",
    "- Use multiple LLM providers (OpenAI, Anthropic, Google, etc.)\n",
    "- Switch easily between models from different providers\n",
    "- Connect to a LiteLLM proxy for centralized model management"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a0bbb56b",
   "metadata": {},
   "source": [
    "## Prerequisites\n",
    "\n",
    "- Python environment setup\n",
    "- API keys for model providers (OpenAI, Anthropic, Google AI Studio)\n",
    "- Basic understanding of LLMs and agent concepts"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7fee50a8",
   "metadata": {},
   "source": [
    "## Installation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "44106a23",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Install dependencies\n",
    "!pip install google-adk litellm"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2171740a",
   "metadata": {},
   "source": [
    "## 1. Setting Up Environment"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6695807e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Setup environment and API keys\n",
    "import os\n",
    "import asyncio\n",
    "from google.adk.agents import Agent\n",
    "from google.adk.models.lite_llm import LiteLlm  # For multi-model support\n",
    "from google.adk.sessions import InMemorySessionService\n",
    "from google.adk.runners import Runner\n",
    "from google.genai import types\n",
    "import litellm  # Import for proxy configuration\n",
    "\n",
    "# Set your API keys\n",
    "os.environ['GOOGLE_API_KEY'] = 'your-google-api-key'  # For Gemini models\n",
    "os.environ['OPENAI_API_KEY'] = 'your-openai-api-key'  # For OpenAI models\n",
    "os.environ['ANTHROPIC_API_KEY'] = 'your-anthropic-api-key'  # For Claude models\n",
    "\n",
    "# Define model constants for cleaner code\n",
    "MODEL_GEMINI_PRO = 'gemini-1.5-pro'\n",
    "MODEL_GPT_4O = 'openai/gpt-4o'\n",
    "MODEL_CLAUDE_SONNET = 'anthropic/claude-3-sonnet-20240229'"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d2b1ed59",
   "metadata": {},
   "source": [
    "## 2. Define a Simple Tool"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "04b3ef5b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Weather tool implementation\n",
    "def get_weather(city: str) -> dict:\n",
    "    \"\"\"Retrieves the current weather report for a specified city.\"\"\"\n",
    "    print(f'Tool: get_weather called for city: {city}')\n",
    "\n",
    "    # Mock weather data\n",
    "    mock_weather_db = {\n",
    "        'newyork': {\n",
    "            'status': 'success',\n",
    "            'report': 'The weather in New York is sunny with a temperature of 25°C.'\n",
    "        },\n",
    "        'london': {\n",
    "            'status': 'success',\n",
    "            'report': \"It's cloudy in London with a temperature of 15°C.\"\n",
    "        },\n",
    "        'tokyo': {\n",
    "            'status': 'success',\n",
    "            'report': 'Tokyo is experiencing light rain and a temperature of 18°C.'\n",
    "        },\n",
    "    }\n",
    "\n",
    "    city_normalized = city.lower().replace(' ', '')\n",
    "\n",
    "    if city_normalized in mock_weather_db:\n",
    "        return mock_weather_db[city_normalized]\n",
    "    else:\n",
    "        return {\n",
    "            'status': 'error',\n",
    "            'error_message': f\"Sorry, I don't have weather information for '{city}'.\"\n",
    "        }"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "727b15c9",
   "metadata": {},
   "source": [
    "## 3. Helper Function for Agent Interaction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f77449bf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Agent interaction helper function\n",
    "async def call_agent_async(query: str, runner, user_id, session_id):\n",
    "    \"\"\"Sends a query to the agent and prints the final response.\"\"\"\n",
    "    print(f'\\n>>> User Query: {query}')\n",
    "\n",
    "    content = types.Content(role='user', parts=[types.Part(text=query)])\n",
    "    final_response_text = 'Agent did not produce a final response.'\n",
    "\n",
    "    async for event in runner.run_async(\n",
    "        user_id=user_id,\n",
    "        session_id=session_id,\n",
    "        new_message=content\n",
    "    ):\n",
    "        if event.is_final_response():\n",
    "            if event.content and event.content.parts:\n",
    "                final_response_text = event.content.parts[0].text\n",
    "            break\n",
    "    print(f'<<< Agent Response: {final_response_text}')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0ac87987",
   "metadata": {},
   "source": [
    "## 4. Using Different Model Providers with ADK\n",
    "\n",
    "### 4.1 Using OpenAI Models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e167d557",
   "metadata": {},
   "outputs": [],
   "source": [
    "# OpenAI model implementation\n",
    "weather_agent_gpt = Agent(\n",
    "    name='weather_agent_gpt',\n",
    "    model=LiteLlm(model=MODEL_GPT_4O),\n",
    "    description='Provides weather information using OpenAI\\'s GPT.',\n",
    "    instruction=(\n",
    "        'You are a helpful weather assistant powered by GPT-4o. '\n",
    "        \"Use the 'get_weather' tool for city weather requests. \"\n",
    "        'Present information clearly.'\n",
    "    ),\n",
    "    tools=[get_weather],\n",
    ")\n",
    "\n",
    "session_service_gpt = InMemorySessionService()\n",
    "session_gpt = session_service_gpt.create_session(\n",
    "    app_name='weather_app', user_id='user_1', session_id='session_gpt'\n",
    ")\n",
    "\n",
    "runner_gpt = Runner(\n",
    "    agent=weather_agent_gpt,\n",
    "    app_name='weather_app',\n",
    "    session_service=session_service_gpt,\n",
    ")\n",
    "\n",
    "async def test_gpt_agent():\n",
    "    print('\\n--- Testing GPT Agent ---')\n",
    "    await call_agent_async(\n",
    "        \"What's the weather in London?\",\n",
    "        runner=runner_gpt,\n",
    "        user_id='user_1',\n",
    "        session_id='session_gpt',\n",
    "    )\n",
    "\n",
    "# To execute in a notebook cell:\n",
    "# await test_gpt_agent()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f9cb0613",
   "metadata": {},
   "source": [
    "### 4.2 Using Anthropic Models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1c653665",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Anthropic model implementation\n",
    "weather_agent_claude = Agent(\n",
    "    name='weather_agent_claude',\n",
    "    model=LiteLlm(model=MODEL_CLAUDE_SONNET),\n",
    "    description='Provides weather information using Anthropic\\'s Claude.',\n",
    "    instruction=(\n",
    "        'You are a helpful weather assistant powered by Claude Sonnet. '\n",
    "        \"Use the 'get_weather' tool for city weather requests. \"\n",
    "        'Present information clearly.'\n",
    "    ),\n",
    "    tools=[get_weather],\n",
    ")\n",
    "\n",
    "session_service_claude = InMemorySessionService()\n",
    "session_claude = session_service_claude.create_session(\n",
    "    app_name='weather_app', user_id='user_1', session_id='session_claude'\n",
    ")\n",
    "\n",
    "runner_claude = Runner(\n",
    "    agent=weather_agent_claude,\n",
    "    app_name='weather_app',\n",
    "    session_service=session_service_claude,\n",
    ")\n",
    "\n",
    "async def test_claude_agent():\n",
    "    print('\\n--- Testing Claude Agent ---')\n",
    "    await call_agent_async(\n",
    "        \"What's the weather in Tokyo?\",\n",
    "        runner=runner_claude,\n",
    "        user_id='user_1',\n",
    "        session_id='session_claude',\n",
    "    )\n",
    "\n",
    "# To execute in a notebook cell:\n",
    "# await test_claude_agent()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bf9d863b",
   "metadata": {},
   "source": [
    "### 4.3 Using Google's Gemini Models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "83f49d0a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Gemini model implementation\n",
    "weather_agent_gemini = Agent(\n",
    "    name='weather_agent_gemini',\n",
    "    model=MODEL_GEMINI_PRO,\n",
    "    description='Provides weather information using Google\\'s Gemini.',\n",
    "    instruction=(\n",
    "        'You are a helpful weather assistant powered by Gemini Pro. '\n",
    "        \"Use the 'get_weather' tool for city weather requests. \"\n",
    "        'Present information clearly.'\n",
    "    ),\n",
    "    tools=[get_weather],\n",
    ")\n",
    "\n",
    "session_service_gemini = InMemorySessionService()\n",
    "session_gemini = session_service_gemini.create_session(\n",
    "    app_name='weather_app', user_id='user_1', session_id='session_gemini'\n",
    ")\n",
    "\n",
    "runner_gemini = Runner(\n",
    "    agent=weather_agent_gemini,\n",
    "    app_name='weather_app',\n",
    "    session_service=session_service_gemini,\n",
    ")\n",
    "\n",
    "async def test_gemini_agent():\n",
    "    print('\\n--- Testing Gemini Agent ---')\n",
    "    await call_agent_async(\n",
    "        \"What's the weather in New York?\",\n",
    "        runner=runner_gemini,\n",
    "        user_id='user_1',\n",
    "        session_id='session_gemini',\n",
    "    )\n",
    "\n",
    "# To execute in a notebook cell:\n",
    "# await test_gemini_agent()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "93bc5fd0",
   "metadata": {},
   "source": [
    "## 5. Using LiteLLM Proxy with ADK"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b4275151",
   "metadata": {},
   "source": [
    "| Variable | Description |\n",
    "|----------|-------------|\n",
    "| `LITELLM_PROXY_API_KEY` | The API key for the LiteLLM proxy |\n",
    "| `LITELLM_PROXY_API_BASE` | The base URL for the LiteLLM proxy |\n",
    "| `USE_LITELLM_PROXY` or `litellm.use_litellm_proxy` | When set to True, your request will be sent to LiteLLM proxy. |"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "256530a6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# LiteLLM proxy integration\n",
    "os.environ['LITELLM_PROXY_API_KEY'] = 'your-litellm-proxy-api-key'\n",
    "os.environ['LITELLM_PROXY_API_BASE'] = 'your-litellm-proxy-url'  # e.g., 'http://localhost:4000'\n",
    "litellm.use_litellm_proxy = True\n",
    "\n",
    "weather_agent_proxy_env = Agent(\n",
    "    name='weather_agent_proxy_env',\n",
    "    model=LiteLlm(model='gpt-4o'),\n",
    "    description='Provides weather information using a model from LiteLLM proxy.',\n",
    "    instruction=(\n",
    "        'You are a helpful weather assistant. '\n",
    "        \"Use the 'get_weather' tool for city weather requests. \"\n",
    "        'Present information clearly.'\n",
    "    ),\n",
    "    tools=[get_weather],\n",
    ")\n",
    "\n",
    "session_service_proxy_env = InMemorySessionService()\n",
    "session_proxy_env = session_service_proxy_env.create_session(\n",
    "    app_name='weather_app', user_id='user_1', session_id='session_proxy_env'\n",
    ")\n",
    "\n",
    "runner_proxy_env = Runner(\n",
    "    agent=weather_agent_proxy_env,\n",
    "    app_name='weather_app',\n",
    "    session_service=session_service_proxy_env,\n",
    ")\n",
    "\n",
    "async def test_proxy_env_agent():\n",
    "    print('\\n--- Testing Proxy-enabled Agent (Environment Variables) ---')\n",
    "    await call_agent_async(\n",
    "        \"What's the weather in London?\",\n",
    "        runner=runner_proxy_env,\n",
    "        user_id='user_1',\n",
    "        session_id='session_proxy_env',\n",
    "    )\n",
    "\n",
    "# To execute in a notebook cell:\n",
    "# await test_proxy_env_agent()"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "name": "python"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}