Spaces:
Configuration error
Configuration error
File size: 6,395 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "gZx-wHJapG5w"
},
"source": [
"# Use liteLLM to call Falcon, Wizard, MPT 7B using OpenAI chatGPT Input/output\n",
"\n",
"* Falcon 7B: https://app.baseten.co/explore/falcon_7b\n",
"* Wizard LM: https://app.baseten.co/explore/wizardlm\n",
"* MPT 7B Base: https://app.baseten.co/explore/mpt_7b_instruct\n",
"\n",
"\n",
"## Call all baseten llm models using OpenAI chatGPT Input/Output using liteLLM\n",
"Example call\n",
"```python\n",
"model = \"q841o8w\" # baseten model version ID\n",
"response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4JSRa0QVogPo"
},
"outputs": [],
"source": [
"!pip install litellm==0.1.399\n",
"!pip install baseten urllib3"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "VEukLhDzo4vw"
},
"outputs": [],
"source": [
"import os\n",
"from litellm import completion"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4STYM2OHFNlc"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"id": "DorpLxw1FHbC"
},
"outputs": [],
"source": [
"os.environ['BASETEN_API_KEY'] = \"\" #@param\n",
"messages = [{ \"content\": \"what does Baseten do? \",\"role\": \"user\"}]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "syF3dTdKFSQQ"
},
"source": [
"## Calling Falcon 7B: https://app.baseten.co/explore/falcon_7b\n",
"### Pass Your Baseten model `Version ID` as `model`"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "rPgSoMlsojz0",
"outputId": "81d6dc7b-1681-4ae4-e4c8-5684eb1bd050"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[32mINFO\u001b[0m API key set.\n",
"INFO:baseten:API key set.\n"
]
},
{
"data": {
"text/plain": [
"{'choices': [{'finish_reason': 'stop',\n",
" 'index': 0,\n",
" 'message': {'role': 'assistant',\n",
" 'content': \"what does Baseten do? \\nI'm sorry, I cannot provide a specific answer as\"}}],\n",
" 'created': 1692135883.699066,\n",
" 'model': 'qvv0xeq'}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = \"qvv0xeq\"\n",
"response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n",
"response"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7n21UroEGCGa"
},
"source": [
"## Calling Wizard LM https://app.baseten.co/explore/wizardlm\n",
"### Pass Your Baseten model `Version ID` as `model`"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "uLVWFH899lAF",
"outputId": "61c2bc74-673b-413e-bb40-179cf408523d"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[32mINFO\u001b[0m API key set.\n",
"INFO:baseten:API key set.\n"
]
},
{
"data": {
"text/plain": [
"{'choices': [{'finish_reason': 'stop',\n",
" 'index': 0,\n",
" 'message': {'role': 'assistant',\n",
" 'content': 'As an AI language model, I do not have personal beliefs or practices, but based on the information available online, Baseten is a popular name for a traditional Ethiopian dish made with injera, a spongy flatbread, and wat, a spicy stew made with meat or vegetables. It is typically served for breakfast or dinner and is a staple in Ethiopian cuisine. The name Baseten is also used to refer to a traditional Ethiopian coffee ceremony, where coffee is brewed and served in a special ceremony with music and food.'}}],\n",
" 'created': 1692135900.2806294,\n",
" 'model': 'q841o8w'}"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = \"q841o8w\"\n",
"response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n",
"response"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6-TFwmPAGPXq"
},
"source": [
"## Calling mosaicml/mpt-7b https://app.baseten.co/explore/mpt_7b_instruct\n",
"### Pass Your Baseten model `Version ID` as `model`"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "gbeYZOrUE_Bp",
"outputId": "838d86ea-2143-4cb3-bc80-2acc2346c37a"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[32mINFO\u001b[0m API key set.\n",
"INFO:baseten:API key set.\n"
]
},
{
"data": {
"text/plain": [
"{'choices': [{'finish_reason': 'stop',\n",
" 'index': 0,\n",
" 'message': {'role': 'assistant',\n",
" 'content': \"\\n===================\\n\\nIt's a tool to build a local version of a game on your own machine to host\\non your website.\\n\\nIt's used to make game demos and show them on Twitter, Tumblr, and Facebook.\\n\\n\\n\\n## What's built\\n\\n- A directory of all your game directories, named with a version name and build number, with images linked to.\\n- Includes HTML to include in another site.\\n- Includes images for your icons and\"}}],\n",
" 'created': 1692135914.7472186,\n",
" 'model': '31dxrj3'}"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = \"31dxrj3\"\n",
"response = completion(model=model, messages=messages, custom_llm_provider=\"baseten\")\n",
"response"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |