File size: 11,424 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install litellm # version 0.1.724 or higher "
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Call Ollama - llama2 with Streaming"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<generator object get_ollama_response_stream at 0x109096c10>\n",
      "{'role': 'assistant', 'content': ' I'}\n",
      "{'role': 'assistant', 'content': \"'\"}\n",
      "{'role': 'assistant', 'content': 'm'}\n",
      "{'role': 'assistant', 'content': ' L'}\n",
      "{'role': 'assistant', 'content': 'La'}\n",
      "{'role': 'assistant', 'content': 'MA'}\n",
      "{'role': 'assistant', 'content': ','}\n",
      "{'role': 'assistant', 'content': ' an'}\n",
      "{'role': 'assistant', 'content': ' A'}\n",
      "{'role': 'assistant', 'content': 'I'}\n",
      "{'role': 'assistant', 'content': ' assistant'}\n",
      "{'role': 'assistant', 'content': ' developed'}\n",
      "{'role': 'assistant', 'content': ' by'}\n",
      "{'role': 'assistant', 'content': ' Meta'}\n",
      "{'role': 'assistant', 'content': ' A'}\n",
      "{'role': 'assistant', 'content': 'I'}\n",
      "{'role': 'assistant', 'content': ' that'}\n",
      "{'role': 'assistant', 'content': ' can'}\n",
      "{'role': 'assistant', 'content': ' understand'}\n",
      "{'role': 'assistant', 'content': ' and'}\n",
      "{'role': 'assistant', 'content': ' respond'}\n",
      "{'role': 'assistant', 'content': ' to'}\n",
      "{'role': 'assistant', 'content': ' human'}\n",
      "{'role': 'assistant', 'content': ' input'}\n",
      "{'role': 'assistant', 'content': ' in'}\n",
      "{'role': 'assistant', 'content': ' a'}\n",
      "{'role': 'assistant', 'content': ' convers'}\n",
      "{'role': 'assistant', 'content': 'ational'}\n",
      "{'role': 'assistant', 'content': ' manner'}\n",
      "{'role': 'assistant', 'content': '.'}\n"
     ]
    }
   ],
   "source": [
    "from litellm import completion\n",
    "\n",
    "response = completion(\n",
    "    model=\"ollama/llama2\", \n",
    "    messages=[{ \"content\": \"respond in 20 words. who are you?\",\"role\": \"user\"}], \n",
    "    api_base=\"http://localhost:11434\",\n",
    "    stream=True\n",
    ")\n",
    "print(response)\n",
    "for chunk in response:\n",
    "    print(chunk['choices'][0]['delta'])\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Call Ollama - Llama2 with Acompletion + Streaming"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Defaulting to user installation because normal site-packages is not writeable\n",
      "Requirement already satisfied: async_generator in /Users/ishaanjaffer/Library/Python/3.9/lib/python/site-packages (1.10)\n"
     ]
    }
   ],
   "source": [
    "# litellm uses async_generator for ollama async streaming, ensure it's installed\n",
    "!pip install async_generator"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' I'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': 'm'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' just'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' an'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' A'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': 'I'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' I'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' don'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': \"'\"}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': 't'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' have'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' access'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' real'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': '-'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': 'time'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' weather'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' information'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' or'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' current'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' conditions'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' in'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' specific'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' location'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' живело'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' can'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' provide'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' with'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' weather'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' forec'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': 'asts'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' information'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' for'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' your'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' location'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' if'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' would'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' like'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' Please'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' let'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' me'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' know'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' where'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' are'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' located'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ','}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' and'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' I'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' will'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' do'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' my'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' best'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' to'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' assist'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': ' you'}}]}\n",
      "{'choices': [{'delta': {'role': 'assistant', 'content': '.'}}]}\n",
      "None\n"
     ]
    }
   ],
   "source": [
    "import litellm\n",
    "\n",
    "async def async_ollama():\n",
    "    response = await litellm.acompletion(\n",
    "        model=\"ollama/llama2\", \n",
    "        messages=[{ \"content\": \"what's the weather\" ,\"role\": \"user\"}], \n",
    "        api_base=\"http://localhost:11434\", \n",
    "        stream=True\n",
    "    )\n",
    "    async for chunk in response:\n",
    "        print(chunk)\n",
    "\n",
    "result = await async_ollama()\n",
    "print(result)\n",
    "\n",
    "try:\n",
    "    async for chunk in result:\n",
    "        print(chunk)\n",
    "except TypeError: # the last chunk is None from Ollama, this raises an error with async streaming\n",
    "    pass"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completion Call"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{\n",
      "  \"object\": \"chat.completion\",\n",
      "  \"choices\": [\n",
      "    {\n",
      "      \"finish_reason\": \"stop\",\n",
      "      \"index\": 0,\n",
      "      \"message\": {\n",
      "        \"content\": \" I'm LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner.\",\n",
      "        \"role\": \"assistant\",\n",
      "        \"logprobs\": null\n",
      "      }\n",
      "    }\n",
      "  ],\n",
      "  \"id\": \"chatcmpl-ea7b8242-791f-4656-ba12-e098edeb960e\",\n",
      "  \"created\": 1695324686.6696231,\n",
      "  \"response_ms\": 4072.3050000000003,\n",
      "  \"model\": \"ollama/llama2\",\n",
      "  \"usage\": {\n",
      "    \"prompt_tokens\": 10,\n",
      "    \"completion_tokens\": 27,\n",
      "    \"total_tokens\": 37\n",
      "  }\n",
      "}\n"
     ]
    }
   ],
   "source": [
    "from litellm import completion\n",
    "\n",
    "response = completion(\n",
    "    model=\"ollama/llama2\", \n",
    "    messages=[{ \"content\": \"respond in 20 words. who are you?\",\"role\": \"user\"}], \n",
    "    api_base=\"http://localhost:11434\"\n",
    ")\n",
    "print(response)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}