File size: 7,791 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# [STREAMING]  OpenAI, Anthropic, Replicate, Cohere using liteLLM\n",
        "In this tutorial:\n",
        "Note: All inputs/outputs are in the format used by `gpt-3.5-turbo`\n",
        "\n",
        "- Call all models in the same input format [**with streaming**]:\n",
        "\n",
        "  `completion(model, messages, stream=True)`\n",
        "- All streaming generators are accessed at `chunk['choices'][0]['delta']`\n",
        "\n",
        "The following Models are covered in this tutorial\n",
        "- [GPT-3.5-Turbo](https://platform.openai.com/docs/models/gpt-3-5)\n",
        "- [Claude-2](https://www.anthropic.com/index/claude-2)\n",
        "- [StableLM Tuned Alpha 7B](https://replicate.com/stability-ai/stablelm-tuned-alpha-7b)\n",
        "- [A16z infra-LLAMA-2 7B Chat](https://replicate.com/a16z-infra/llama-2-7b-chat)\n",
        "- [Vicuna 13B](https://replicate.com/replicate/vicuna-13b)\n",
        "- [Cohere - Command Nightly]()\n",
        "\n",
        "\n",
        "\n"
      ],
      "metadata": {
        "id": "YV6L5fNv7Kep"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "TO-EdF84O9QT"
      },
      "outputs": [],
      "source": [
        "# install liteLLM\n",
        "!pip install litellm==0.1.369"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Imports & Set ENV variables\n",
        "Get your API Keys\n",
        "\n",
        "https://platform.openai.com/account/api-keys\n",
        "\n",
        "https://replicate.com/account/api-tokens\n",
        "\n",
        "https://console.anthropic.com/account/keys\n",
        "\n",
        "https://dashboard.cohere.ai/api-keys\n"
      ],
      "metadata": {
        "id": "mpHTbTqQ8fey"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from litellm import completion\n",
        "import os\n",
        "\n",
        "os.environ['OPENAI_API_KEY'] = '' # @param\n",
        "os.environ['REPLICATE_API_TOKEN'] = '' # @param\n",
        "os.environ['ANTHROPIC_API_KEY'] = '' # @param\n",
        "os.environ['COHERE_API_KEY'] = '' # @param"
      ],
      "metadata": {
        "id": "kDbgfcU8O-dW"
      },
      "execution_count": 8,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Set Messages"
      ],
      "metadata": {
        "id": "1KmkOdzLSOmJ"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "user_message = \"Hello, whats the weather in San Francisco??\"\n",
        "messages = [{ \"content\": user_message,\"role\": \"user\"}]"
      ],
      "metadata": {
        "id": "xIEeOhVH-oh6"
      },
      "execution_count": 4,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Calling Models using liteLLM Streaming -\n",
        "\n",
        "## `completion(model, messages, stream)`"
      ],
      "metadata": {
        "id": "9SOCVRC1L-G3"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# replicate models #######\n",
        "stability_ai = \"stability-ai/stablelm-tuned-alpha-7b:c49dae362cbaecd2ceabb5bd34fdb68413c4ff775111fea065d259d577757beb\"\n",
        "llama_2_7b = \"a16z-infra/llama-2-7b-chat:4f0b260b6a13eb53a6b1891f089d57c08f41003ae79458be5011303d81a394dc\"\n",
        "vicuna = \"replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b\"\n",
        "\n",
        "models = [\"gpt-3.5-turbo\", \"claude-2\", stability_ai, llama_2_7b, vicuna, \"command-nightly\"] # command-nightly is Cohere\n",
        "for model in models:\n",
        "  replicate = (model == stability_ai or model==llama_2_7b or model==vicuna) # let liteLLM know if a model is replicate, using this optional param, `replicate=True`\n",
        "  response = completion(model=model, messages=messages, stream=True, replicate=replicate)\n",
        "  print(f\"####################\\n\\nResponse from {model}\")\n",
        "  for i, chunk in enumerate(response):\n",
        "    if i < 5: # NOTE: LIMITING CHUNKS FOR THIS DEMO\n",
        "      print((chunk['choices'][0]['delta']))\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "XJ4nh4SnRzHP",
        "outputId": "26b9fe10-b499-4a97-d60d-a8cb8f8030b8"
      },
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "####################\n",
            "\n",
            "Response from gpt-3.5-turbo\n",
            "{\n",
            "  \"role\": \"assistant\",\n",
            "  \"content\": \"\"\n",
            "}\n",
            "{\n",
            "  \"content\": \"I\"\n",
            "}\n",
            "{\n",
            "  \"content\": \"'m\"\n",
            "}\n",
            "{\n",
            "  \"content\": \" sorry\"\n",
            "}\n",
            "{\n",
            "  \"content\": \",\"\n",
            "}\n",
            "####################\n",
            "\n",
            "Response from claude-2\n",
            "{'role': 'assistant', 'content': ' Unfortunately'}\n",
            "{'role': 'assistant', 'content': ' I'}\n",
            "{'role': 'assistant', 'content': ' don'}\n",
            "{'role': 'assistant', 'content': \"'t\"}\n",
            "{'role': 'assistant', 'content': ' have'}\n",
            "####################\n",
            "\n",
            "Response from stability-ai/stablelm-tuned-alpha-7b:c49dae362cbaecd2ceabb5bd34fdb68413c4ff775111fea065d259d577757beb\n",
            "{'role': 'assistant', 'content': \"I'm\"}\n",
            "{'role': 'assistant', 'content': ' sorry,'}\n",
            "{'role': 'assistant', 'content': ' I'}\n",
            "{'role': 'assistant', 'content': ' cannot'}\n",
            "{'role': 'assistant', 'content': ' answer'}\n",
            "####################\n",
            "\n",
            "Response from a16z-infra/llama-2-7b-chat:4f0b260b6a13eb53a6b1891f089d57c08f41003ae79458be5011303d81a394dc\n",
            "{'role': 'assistant', 'content': ''}\n",
            "{'role': 'assistant', 'content': ' Hello'}\n",
            "{'role': 'assistant', 'content': '!'}\n",
            "{'role': 'assistant', 'content': ' I'}\n",
            "{'role': 'assistant', 'content': \"'\"}\n",
            "####################\n",
            "\n",
            "Response from replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b\n",
            "{'role': 'assistant', 'content': 'Comment:'}\n",
            "{'role': 'assistant', 'content': 'Hi! '}\n",
            "{'role': 'assistant', 'content': 'How '}\n",
            "{'role': 'assistant', 'content': 'are '}\n",
            "{'role': 'assistant', 'content': 'you '}\n",
            "####################\n",
            "\n",
            "Response from command-nightly\n",
            "{'role': 'assistant', 'content': ' Hello'}\n",
            "{'role': 'assistant', 'content': '!'}\n",
            "{'role': 'assistant', 'content': ' '}\n",
            "{'role': 'assistant', 'content': ' I'}\n",
            "{'role': 'assistant', 'content': \"'m\"}\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "t7WMRuL-8NrO"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}