File size: 4,513 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import sys
import os
from dotenv import load_dotenv

load_dotenv()

sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system path

from litellm import Router
import litellm

litellm.set_verbose = False
os.environ.pop("AZURE_AD_TOKEN")

model_list = [
    {  # list of model deployments
        "model_name": "gpt-3.5-turbo",  # model alias
        "litellm_params": {  # params for litellm completion/embedding call
            "model": "azure/chatgpt-v-2",  # actual model name
            "api_key": os.getenv("AZURE_API_KEY"),
            "api_version": os.getenv("AZURE_API_VERSION"),
            "api_base": os.getenv("AZURE_API_BASE"),
        },
    },
    {
        "model_name": "gpt-3.5-turbo",
        "litellm_params": {  # params for litellm completion/embedding call
            "model": "azure/chatgpt-functioncalling",
            "api_key": os.getenv("AZURE_API_KEY"),
            "api_version": os.getenv("AZURE_API_VERSION"),
            "api_base": os.getenv("AZURE_API_BASE"),
        },
    },
    {
        "model_name": "gpt-3.5-turbo",
        "litellm_params": {  # params for litellm completion/embedding call
            "model": "gpt-3.5-turbo",
            "api_key": os.getenv("OPENAI_API_KEY"),
        },
    },
]
router = Router(model_list=model_list)


file_paths = [
    "test_questions/question1.txt",
    "test_questions/question2.txt",
    "test_questions/question3.txt",
]
questions = []

for file_path in file_paths:
    try:
        print(file_path)
        with open(file_path, "r") as file:
            content = file.read()
            questions.append(content)
    except FileNotFoundError as e:
        print(f"File not found: {e}")
    except Exception as e:
        print(f"An error occurred: {e}")

# for q in questions:
#     print(q)


# make X concurrent calls to litellm.completion(model=gpt-35-turbo, messages=[]), pick a random question in questions array.
#  Allow me to tune X concurrent calls.. Log question, output/exception, response time somewhere
# show me a summary of requests made, success full calls, failed calls. For failed calls show me the exceptions

import concurrent.futures
import random
import time


# Function to make concurrent calls to OpenAI API
def make_openai_completion(question):
    try:
        start_time = time.time()
        import openai

        client = openai.OpenAI(
            api_key=os.environ["OPENAI_API_KEY"], base_url="http://0.0.0.0:8000"
        )  # base_url="http://0.0.0.0:8000",
        response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[
                {
                    "role": "system",
                    "content": f"You are a helpful assistant. Answer this question{question}",
                }
            ],
        )
        print(response)
        end_time = time.time()

        # Log the request details
        with open("request_log.txt", "a") as log_file:
            log_file.write(
                f"Question: {question[:100]}\nResponse ID:{response.id} Content:{response.choices[0].message.content[:10]}\nTime: {end_time - start_time:.2f} seconds\n\n"
            )

        return response
    except Exception as e:
        # Log exceptions for failed calls
        with open("error_log.txt", "a") as error_log_file:
            error_log_file.write(f"Question: {question[:100]}\nException: {str(e)}\n\n")
        return None


# Number of concurrent calls (you can adjust this)
concurrent_calls = 100

# List to store the futures of concurrent calls
futures = []

# Make concurrent calls
with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_calls) as executor:
    for _ in range(concurrent_calls):
        random_question = random.choice(questions)
        futures.append(executor.submit(make_openai_completion, random_question))

# Wait for all futures to complete
concurrent.futures.wait(futures)

# Summarize the results
successful_calls = 0
failed_calls = 0

for future in futures:
    if future.result() is not None:
        successful_calls += 1
    else:
        failed_calls += 1

print("Load test Summary:")
print(f"Total Requests: {concurrent_calls}")
print(f"Successful Calls: {successful_calls}")
print(f"Failed Calls: {failed_calls}")

# Display content of the logs
with open("request_log.txt", "r") as log_file:
    print("\nRequest Log:\n", log_file.read())

with open("error_log.txt", "r") as error_log_file:
    print("\nError Log:\n", error_log_file.read())