File size: 8,374 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Databricks Notebook with MLFlow AutoLogging for LiteLLM Proxy calls\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "application/vnd.databricks.v1+cell": {
     "cellMetadata": {
      "byteLimit": 2048000,
      "rowLimit": 10000
     },
     "inputWidgets": {},
     "nuid": "5e2812ed-8000-4793-b090-49a31464d810",
     "showTitle": false,
     "title": ""
    }
   },
   "outputs": [],
   "source": [
    "%pip install -U -qqqq databricks-agents mlflow langchain==0.3.1 langchain-core==0.3.6 "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "application/vnd.databricks.v1+cell": {
     "cellMetadata": {
      "byteLimit": 2048000,
      "rowLimit": 10000
     },
     "inputWidgets": {},
     "nuid": "52530b37-1860-4bba-a6c1-723de83bc58f",
     "showTitle": false,
     "title": ""
    }
   },
   "outputs": [],
   "source": [
    "%pip install \"langchain-openai<=0.3.1\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "application/vnd.databricks.v1+cell": {
     "cellMetadata": {
      "byteLimit": 2048000,
      "rowLimit": 10000
     },
     "inputWidgets": {},
     "nuid": "43c6f4b1-e2d5-431c-b1a2-b97df7707d59",
     "showTitle": false,
     "title": ""
    }
   },
   "outputs": [],
   "source": [
    "# Before logging this chain using the driver notebook, you must comment out this line.\n",
    "dbutils.library.restartPython() "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "application/vnd.databricks.v1+cell": {
     "cellMetadata": {
      "byteLimit": 2048000,
      "rowLimit": 10000
     },
     "inputWidgets": {},
     "nuid": "88eb8dd7-16b1-480b-aa70-cd429ef87159",
     "showTitle": false,
     "title": ""
    }
   },
   "outputs": [],
   "source": [
    "import mlflow\n",
    "from operator import itemgetter\n",
    "from langchain_core.output_parsers import StrOutputParser\n",
    "from langchain_core.prompts import PromptTemplate\n",
    "from langchain_core.runnables import RunnableLambda\n",
    "from langchain_databricks import ChatDatabricks\n",
    "from langchain_openai import ChatOpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "application/vnd.databricks.v1+cell": {
     "cellMetadata": {
      "byteLimit": 2048000,
      "rowLimit": 10000
     },
     "inputWidgets": {},
     "nuid": "f0fdca8f-6f6f-407c-ad4a-0d5a2778728e",
     "showTitle": false,
     "title": ""
    }
   },
   "outputs": [],
   "source": [
    "mlflow.langchain.autolog()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "application/vnd.databricks.v1+cell": {
     "cellMetadata": {
      "byteLimit": 2048000,
      "rowLimit": 10000
     },
     "inputWidgets": {},
     "nuid": "2ef67315-e468-4d60-a318-98c2cac75bc4",
     "showTitle": false,
     "title": ""
    }
   },
   "outputs": [],
   "source": [
    "# These helper functions parse the `messages` array.\n",
    "\n",
    "# Return the string contents of the most recent message from the user\n",
    "def extract_user_query_string(chat_messages_array):\n",
    "    return chat_messages_array[-1][\"content\"]\n",
    "\n",
    "\n",
    "# Return the chat history, which is is everything before the last question\n",
    "def extract_chat_history(chat_messages_array):\n",
    "    return chat_messages_array[:-1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "application/vnd.databricks.v1+cell": {
     "cellMetadata": {
      "byteLimit": 2048000,
      "rowLimit": 10000
     },
     "inputWidgets": {},
     "nuid": "17708467-1976-48bd-94a0-8c7895cfae3b",
     "showTitle": false,
     "title": ""
    }
   },
   "outputs": [],
   "source": [
    "model = ChatOpenAI(\n",
    "    openai_api_base=\"LITELLM_PROXY_BASE_URL\", # e.g.: http://0.0.0.0:4000\n",
    "    model = \"gpt-3.5-turbo\", # LITELLM 'model_name'\n",
    "    temperature=0.1, \n",
    "    api_key=\"LITELLM_PROXY_API_KEY\" # e.g.: \"sk-1234\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "application/vnd.databricks.v1+cell": {
     "cellMetadata": {
      "byteLimit": 2048000,
      "rowLimit": 10000
     },
     "inputWidgets": {},
     "nuid": "a5f2c2af-82f7-470d-b559-47b67fb00cda",
     "showTitle": false,
     "title": ""
    }
   },
   "outputs": [],
   "source": [
    "############\n",
    "# Prompt Template for generation\n",
    "############\n",
    "prompt = PromptTemplate(\n",
    "    template=\"You are a hello world bot.  Respond with a reply to the user's question that is fun and interesting to the user.  User's question: {question}\",\n",
    "    input_variables=[\"question\"],\n",
    ")\n",
    "\n",
    "############\n",
    "# FM for generation\n",
    "# ChatDatabricks accepts any /llm/v1/chat model serving endpoint\n",
    "############\n",
    "model = ChatDatabricks(\n",
    "    endpoint=\"databricks-dbrx-instruct\",\n",
    "    extra_params={\"temperature\": 0.01, \"max_tokens\": 500},\n",
    ")\n",
    "\n",
    "\n",
    "############\n",
    "# Simple chain\n",
    "############\n",
    "# The framework requires the chain to return a string value.\n",
    "chain = (\n",
    "    {\n",
    "        \"question\": itemgetter(\"messages\")\n",
    "        | RunnableLambda(extract_user_query_string),\n",
    "        \"chat_history\": itemgetter(\"messages\") | RunnableLambda(extract_chat_history),\n",
    "    }\n",
    "    | prompt\n",
    "    | model\n",
    "    | StrOutputParser()\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "application/vnd.databricks.v1+cell": {
     "cellMetadata": {
      "byteLimit": 2048000,
      "rowLimit": 10000
     },
     "inputWidgets": {},
     "nuid": "366edd90-62a1-4d6f-8a65-0211fb24ca02",
     "showTitle": false,
     "title": ""
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'Hello there! I\\'m here to help with your questions. Regarding your query about \"rag,\" it\\'s not something typically associated with a \"hello world\" bot, but I\\'m happy to explain!\\n\\nRAG, or Remote Angular GUI, is a tool that allows you to create and manage Angular applications remotely. It\\'s a way to develop and test Angular components and applications without needing to set up a local development environment. This can be particularly useful for teams working on distributed systems or for developers who prefer to work in a cloud-based environment.\\n\\nI hope this explanation of RAG has been helpful and interesting! If you have any other questions or need further clarification, feel free to ask.'"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/databricks.mlflow.trace": "\"tr-ea2226413395413ba2cf52cffc523502\"",
      "text/plain": [
       "Trace(request_id=tr-ea2226413395413ba2cf52cffc523502)"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# This is the same input your chain's REST API will accept.\n",
    "question = {\n",
    "    \"messages\": [\n",
    "               {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": \"what is rag?\",\n",
    "        },\n",
    "    ]\n",
    "}\n",
    "\n",
    "chain.invoke(question)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "application/vnd.databricks.v1+cell": {
     "cellMetadata": {
      "byteLimit": 2048000,
      "rowLimit": 10000
     },
     "inputWidgets": {},
     "nuid": "5d68e37d-0980-4a02-bf8d-885c3853f6c1",
     "showTitle": false,
     "title": ""
    }
   },
   "outputs": [],
   "source": [
    "mlflow.models.set_model(model=model)"
   ]
  }
 ],
 "metadata": {
  "application/vnd.databricks.v1+notebook": {
   "dashboards": [],
   "environmentMetadata": null,
   "language": "python",
   "notebookMetadata": {
    "pythonIndentUnit": 4
   },
   "notebookName": "Untitled Notebook 2024-10-16 19:35:16",
   "widgets": {}
  },
  "language_info": {
   "name": "python"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}