Spaces:
Configuration error
Configuration error
File size: 31,088 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 |
# What is this?
## This hook is used to check for LiteLLM managed files in the request body, and replace them with model-specific file id
import asyncio
import base64
import json
import uuid
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Union, cast
from fastapi import HTTPException
from litellm import Router, verbose_logger
from litellm.caching.caching import DualCache
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.prompt_templates.common_utils import extract_file_data
from litellm.llms.base_llm.files.transformation import BaseFileEndpoints
from litellm.proxy._types import (
CallTypes,
LiteLLM_ManagedFileTable,
LiteLLM_ManagedObjectTable,
UserAPIKeyAuth,
)
from litellm.proxy.openai_files_endpoints.common_utils import (
_is_base64_encoded_unified_file_id,
convert_b64_uid_to_unified_uid,
)
from litellm.types.llms.openai import (
AllMessageValues,
AsyncCursorPage,
ChatCompletionFileObject,
CreateFileRequest,
FileObject,
OpenAIFileObject,
OpenAIFilesPurpose,
)
from litellm.types.utils import (
LiteLLMBatch,
LiteLLMFineTuningJob,
LLMResponseTypes,
SpecialEnums,
)
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span
from litellm.proxy.utils import InternalUsageCache as _InternalUsageCache
from litellm.proxy.utils import PrismaClient as _PrismaClient
Span = Union[_Span, Any]
InternalUsageCache = _InternalUsageCache
PrismaClient = _PrismaClient
else:
Span = Any
InternalUsageCache = Any
PrismaClient = Any
class _PROXY_LiteLLMManagedFiles(CustomLogger, BaseFileEndpoints):
# Class variables or attributes
def __init__(
self, internal_usage_cache: InternalUsageCache, prisma_client: PrismaClient
):
self.internal_usage_cache = internal_usage_cache
self.prisma_client = prisma_client
async def store_unified_file_id(
self,
file_id: str,
file_object: OpenAIFileObject,
litellm_parent_otel_span: Optional[Span],
model_mappings: Dict[str, str],
user_api_key_dict: UserAPIKeyAuth,
) -> None:
verbose_logger.info(
f"Storing LiteLLM Managed File object with id={file_id} in cache"
)
litellm_managed_file_object = LiteLLM_ManagedFileTable(
unified_file_id=file_id,
file_object=file_object,
model_mappings=model_mappings,
flat_model_file_ids=list(model_mappings.values()),
created_by=user_api_key_dict.user_id,
updated_by=user_api_key_dict.user_id,
)
await self.internal_usage_cache.async_set_cache(
key=file_id,
value=litellm_managed_file_object.model_dump(),
litellm_parent_otel_span=litellm_parent_otel_span,
)
await self.prisma_client.db.litellm_managedfiletable.create(
data={
"unified_file_id": file_id,
"file_object": file_object.model_dump_json(),
"model_mappings": json.dumps(model_mappings),
"flat_model_file_ids": list(model_mappings.values()),
"created_by": user_api_key_dict.user_id,
"updated_by": user_api_key_dict.user_id,
}
)
async def store_unified_object_id(
self,
unified_object_id: str,
file_object: Union[LiteLLMBatch, LiteLLMFineTuningJob],
litellm_parent_otel_span: Optional[Span],
model_object_id: str,
file_purpose: Literal["batch", "fine-tune"],
user_api_key_dict: UserAPIKeyAuth,
) -> None:
verbose_logger.info(
f"Storing LiteLLM Managed {file_purpose} object with id={unified_object_id} in cache"
)
litellm_managed_object = LiteLLM_ManagedObjectTable(
unified_object_id=unified_object_id,
model_object_id=model_object_id,
file_purpose=file_purpose,
file_object=file_object,
)
await self.internal_usage_cache.async_set_cache(
key=unified_object_id,
value=litellm_managed_object.model_dump(),
litellm_parent_otel_span=litellm_parent_otel_span,
)
await self.prisma_client.db.litellm_managedobjecttable.create(
data={
"unified_object_id": unified_object_id,
"file_object": file_object.model_dump_json(),
"model_object_id": model_object_id,
"file_purpose": file_purpose,
"created_by": user_api_key_dict.user_id,
"updated_by": user_api_key_dict.user_id,
}
)
async def get_unified_file_id(
self, file_id: str, litellm_parent_otel_span: Optional[Span] = None
) -> Optional[LiteLLM_ManagedFileTable]:
## CHECK CACHE
result = cast(
Optional[dict],
await self.internal_usage_cache.async_get_cache(
key=file_id,
litellm_parent_otel_span=litellm_parent_otel_span,
),
)
if result:
return LiteLLM_ManagedFileTable(**result)
## CHECK DB
db_object = await self.prisma_client.db.litellm_managedfiletable.find_first(
where={"unified_file_id": file_id}
)
if db_object:
return LiteLLM_ManagedFileTable(**db_object.model_dump())
return None
async def delete_unified_file_id(
self, file_id: str, litellm_parent_otel_span: Optional[Span] = None
) -> OpenAIFileObject:
## get old value
initial_value = await self.prisma_client.db.litellm_managedfiletable.find_first(
where={"unified_file_id": file_id}
)
if initial_value is None:
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
## delete old value
await self.internal_usage_cache.async_set_cache(
key=file_id,
value=None,
litellm_parent_otel_span=litellm_parent_otel_span,
)
await self.prisma_client.db.litellm_managedfiletable.delete(
where={"unified_file_id": file_id}
)
return initial_value.file_object
async def can_user_call_unified_file_id(
self, unified_file_id: str, user_api_key_dict: UserAPIKeyAuth
) -> bool:
## check if the user has access to the unified file id
user_id = user_api_key_dict.user_id
managed_file = await self.prisma_client.db.litellm_managedfiletable.find_first(
where={"unified_file_id": unified_file_id}
)
if managed_file:
return managed_file.created_by == user_id
return False
async def can_user_call_unified_object_id(
self, unified_object_id: str, user_api_key_dict: UserAPIKeyAuth
) -> bool:
## check if the user has access to the unified object id
## check if the user has access to the unified object id
user_id = user_api_key_dict.user_id
managed_object = (
await self.prisma_client.db.litellm_managedobjecttable.find_first(
where={"unified_object_id": unified_object_id}
)
)
if managed_object:
return managed_object.created_by == user_id
return False
async def get_user_created_file_ids(
self, user_api_key_dict: UserAPIKeyAuth, model_object_ids: List[str]
) -> List[OpenAIFileObject]:
"""
Get all file ids created by the user for a list of model object ids
Returns:
- List of OpenAIFileObject's
"""
file_ids = await self.prisma_client.db.litellm_managedfiletable.find_many(
where={
"created_by": user_api_key_dict.user_id,
"flat_model_file_ids": {"hasSome": model_object_ids},
}
)
return [OpenAIFileObject(**file_object.file_object) for file_object in file_ids]
async def check_managed_file_id_access(
self, data: Dict, user_api_key_dict: UserAPIKeyAuth
) -> bool:
retrieve_file_id = cast(Optional[str], data.get("file_id"))
potential_file_id = (
_is_base64_encoded_unified_file_id(retrieve_file_id)
if retrieve_file_id
else False
)
if potential_file_id and retrieve_file_id:
if await self.can_user_call_unified_file_id(
retrieve_file_id, user_api_key_dict
):
return True
else:
raise HTTPException(
status_code=403,
detail=f"User {user_api_key_dict.user_id} does not have access to the file {retrieve_file_id}",
)
return False
async def async_pre_call_hook(
self,
user_api_key_dict: UserAPIKeyAuth,
cache: DualCache,
data: Dict,
call_type: Literal[
"completion",
"text_completion",
"embeddings",
"image_generation",
"moderation",
"audio_transcription",
"pass_through_endpoint",
"rerank",
"acreate_batch",
"aretrieve_batch",
"acreate_file",
"afile_list",
"afile_delete",
"afile_content",
"acreate_fine_tuning_job",
"aretrieve_fine_tuning_job",
"alist_fine_tuning_jobs",
"acancel_fine_tuning_job",
],
) -> Union[Exception, str, Dict, None]:
"""
- Detect litellm_proxy/ file_id
- add dictionary of mappings of litellm_proxy/ file_id -> provider_file_id => {litellm_proxy/file_id: {"model_id": id, "file_id": provider_file_id}}
"""
### HANDLE FILE ACCESS ### - ensure user has access to the file
if (
call_type == CallTypes.afile_content.value
or call_type == CallTypes.afile_delete.value
):
await self.check_managed_file_id_access(data, user_api_key_dict)
### HANDLE TRANSFORMATIONS ###
if call_type == CallTypes.completion.value:
messages = data.get("messages")
if messages:
file_ids = self.get_file_ids_from_messages(messages)
if file_ids:
model_file_id_mapping = await self.get_model_file_id_mapping(
file_ids, user_api_key_dict.parent_otel_span
)
data["model_file_id_mapping"] = model_file_id_mapping
elif call_type == CallTypes.afile_content.value:
retrieve_file_id = cast(Optional[str], data.get("file_id"))
potential_file_id = (
_is_base64_encoded_unified_file_id(retrieve_file_id)
if retrieve_file_id
else False
)
if potential_file_id:
model_id = self.get_model_id_from_unified_file_id(potential_file_id)
if model_id:
data["model"] = model_id
data["file_id"] = self.get_output_file_id_from_unified_file_id(
potential_file_id
)
elif call_type == CallTypes.acreate_batch.value:
input_file_id = cast(Optional[str], data.get("input_file_id"))
if input_file_id:
model_file_id_mapping = await self.get_model_file_id_mapping(
[input_file_id], user_api_key_dict.parent_otel_span
)
data["model_file_id_mapping"] = model_file_id_mapping
elif (
call_type == CallTypes.aretrieve_batch.value
or call_type == CallTypes.acancel_fine_tuning_job.value
or call_type == CallTypes.aretrieve_fine_tuning_job.value
):
accessor_key: Optional[str] = None
retrieve_object_id: Optional[str] = None
if call_type == CallTypes.aretrieve_batch.value:
accessor_key = "batch_id"
elif (
call_type == CallTypes.acancel_fine_tuning_job.value
or call_type == CallTypes.aretrieve_fine_tuning_job.value
):
accessor_key = "fine_tuning_job_id"
if accessor_key:
retrieve_object_id = cast(Optional[str], data.get(accessor_key))
potential_llm_object_id = (
_is_base64_encoded_unified_file_id(retrieve_object_id)
if retrieve_object_id
else False
)
if potential_llm_object_id and retrieve_object_id:
## VALIDATE USER HAS ACCESS TO THE OBJECT ##
if not await self.can_user_call_unified_object_id(
retrieve_object_id, user_api_key_dict
):
raise HTTPException(
status_code=403,
detail=f"User {user_api_key_dict.user_id} does not have access to the object {retrieve_object_id}",
)
## for managed batch id - get the model id
potential_model_id = self.get_model_id_from_unified_batch_id(
potential_llm_object_id
)
if potential_model_id is None:
raise Exception(
f"LiteLLM Managed {accessor_key} with id={retrieve_object_id} is invalid - does not contain encoded model_id."
)
data["model"] = potential_model_id
data[accessor_key] = self.get_batch_id_from_unified_batch_id(
potential_llm_object_id
)
elif call_type == CallTypes.acreate_fine_tuning_job.value:
input_file_id = cast(Optional[str], data.get("training_file"))
if input_file_id:
model_file_id_mapping = await self.get_model_file_id_mapping(
[input_file_id], user_api_key_dict.parent_otel_span
)
return data
async def async_pre_call_deployment_hook(
self, kwargs: Dict[str, Any], call_type: Optional[CallTypes]
) -> Optional[dict]:
"""
Allow modifying the request just before it's sent to the deployment.
"""
accessor_key: Optional[str] = None
if call_type and call_type == CallTypes.acreate_batch:
accessor_key = "input_file_id"
elif call_type and call_type == CallTypes.acreate_fine_tuning_job:
accessor_key = "training_file"
else:
return kwargs
if accessor_key:
input_file_id = cast(Optional[str], kwargs.get(accessor_key))
model_file_id_mapping = cast(
Optional[Dict[str, Dict[str, str]]], kwargs.get("model_file_id_mapping")
)
model_id = cast(Optional[str], kwargs.get("model_info", {}).get("id", None))
mapped_file_id: Optional[str] = None
if input_file_id and model_file_id_mapping and model_id:
mapped_file_id = model_file_id_mapping.get(input_file_id, {}).get(
model_id, None
)
if mapped_file_id:
kwargs[accessor_key] = mapped_file_id
return kwargs
def get_file_ids_from_messages(self, messages: List[AllMessageValues]) -> List[str]:
"""
Gets file ids from messages
"""
file_ids = []
for message in messages:
if message.get("role") == "user":
content = message.get("content")
if content:
if isinstance(content, str):
continue
for c in content:
if c["type"] == "file":
file_object = cast(ChatCompletionFileObject, c)
file_object_file_field = file_object["file"]
file_id = file_object_file_field.get("file_id")
if file_id:
file_ids.append(file_id)
return file_ids
async def get_model_file_id_mapping(
self, file_ids: List[str], litellm_parent_otel_span: Span
) -> dict:
"""
Get model-specific file IDs for a list of proxy file IDs.
Returns a dictionary mapping litellm_proxy/ file_id -> model_id -> model_file_id
1. Get all the litellm_proxy/ file_ids from the messages
2. For each file_id, search for cache keys matching the pattern file_id:*
3. Return a dictionary of mappings of litellm_proxy/ file_id -> model_id -> model_file_id
Example:
{
"litellm_proxy/file_id": {
"model_id": "model_file_id"
}
}
"""
file_id_mapping: Dict[str, Dict[str, str]] = {}
litellm_managed_file_ids = []
for file_id in file_ids:
## CHECK IF FILE ID IS MANAGED BY LITELM
is_base64_unified_file_id = _is_base64_encoded_unified_file_id(file_id)
if is_base64_unified_file_id:
litellm_managed_file_ids.append(file_id)
if litellm_managed_file_ids:
# Get all cache keys matching the pattern file_id:*
for file_id in litellm_managed_file_ids:
# Search for any cache key starting with this file_id
unified_file_object = await self.get_unified_file_id(
file_id, litellm_parent_otel_span
)
if unified_file_object:
file_id_mapping[file_id] = unified_file_object.model_mappings
return file_id_mapping
async def create_file_for_each_model(
self,
llm_router: Optional[Router],
_create_file_request: CreateFileRequest,
target_model_names_list: List[str],
litellm_parent_otel_span: Span,
) -> List[OpenAIFileObject]:
if llm_router is None:
raise Exception("LLM Router not initialized. Ensure models added to proxy.")
responses = []
for model in target_model_names_list:
individual_response = await llm_router.acreate_file(
model=model, **_create_file_request
)
responses.append(individual_response)
return responses
async def acreate_file(
self,
create_file_request: CreateFileRequest,
llm_router: Router,
target_model_names_list: List[str],
litellm_parent_otel_span: Span,
user_api_key_dict: UserAPIKeyAuth,
) -> OpenAIFileObject:
responses = await self.create_file_for_each_model(
llm_router=llm_router,
_create_file_request=create_file_request,
target_model_names_list=target_model_names_list,
litellm_parent_otel_span=litellm_parent_otel_span,
)
response = await _PROXY_LiteLLMManagedFiles.return_unified_file_id(
file_objects=responses,
create_file_request=create_file_request,
internal_usage_cache=self.internal_usage_cache,
litellm_parent_otel_span=litellm_parent_otel_span,
target_model_names_list=target_model_names_list,
)
## STORE MODEL MAPPINGS IN DB
model_mappings: Dict[str, str] = {}
for file_object in responses:
model_id = file_object._hidden_params.get("model_id")
if model_id is None:
verbose_logger.warning(
f"Skipping file_object: {file_object} because model_id in hidden_params={file_object._hidden_params} is None"
)
continue
file_id = file_object.id
model_mappings[model_id] = file_id
await self.store_unified_file_id(
file_id=response.id,
file_object=response,
litellm_parent_otel_span=litellm_parent_otel_span,
model_mappings=model_mappings,
user_api_key_dict=user_api_key_dict,
)
return response
@staticmethod
async def return_unified_file_id(
file_objects: List[OpenAIFileObject],
create_file_request: CreateFileRequest,
internal_usage_cache: InternalUsageCache,
litellm_parent_otel_span: Span,
target_model_names_list: List[str],
) -> OpenAIFileObject:
## GET THE FILE TYPE FROM THE CREATE FILE REQUEST
file_data = extract_file_data(create_file_request["file"])
file_type = file_data["content_type"]
output_file_id = file_objects[0].id
model_id = file_objects[0]._hidden_params.get("model_id")
unified_file_id = SpecialEnums.LITELLM_MANAGED_FILE_COMPLETE_STR.value.format(
file_type,
str(uuid.uuid4()),
",".join(target_model_names_list),
output_file_id,
model_id,
)
# Convert to URL-safe base64 and strip padding
base64_unified_file_id = (
base64.urlsafe_b64encode(unified_file_id.encode()).decode().rstrip("=")
)
## CREATE RESPONSE OBJECT
response = OpenAIFileObject(
id=base64_unified_file_id,
object="file",
purpose=create_file_request["purpose"],
created_at=file_objects[0].created_at,
bytes=file_objects[0].bytes,
filename=file_objects[0].filename,
status="uploaded",
)
return response
def get_unified_generic_response_id(
self, model_id: str, generic_response_id: str
) -> str:
unified_generic_response_id = (
SpecialEnums.LITELLM_MANAGED_GENERIC_RESPONSE_COMPLETE_STR.value.format(
model_id, generic_response_id
)
)
return (
base64.urlsafe_b64encode(unified_generic_response_id.encode())
.decode()
.rstrip("=")
)
def get_unified_batch_id(self, batch_id: str, model_id: str) -> str:
unified_batch_id = SpecialEnums.LITELLM_MANAGED_BATCH_COMPLETE_STR.value.format(
model_id, batch_id
)
return base64.urlsafe_b64encode(unified_batch_id.encode()).decode().rstrip("=")
def get_unified_output_file_id(
self, output_file_id: str, model_id: str, model_name: str
) -> str:
unified_output_file_id = (
SpecialEnums.LITELLM_MANAGED_FILE_COMPLETE_STR.value.format(
"application/json",
str(uuid.uuid4()),
model_name,
output_file_id,
model_id,
)
)
return (
base64.urlsafe_b64encode(unified_output_file_id.encode())
.decode()
.rstrip("=")
)
def get_model_id_from_unified_file_id(self, file_id: str) -> str:
return file_id.split("llm_output_file_model_id,")[1].split(";")[0]
def get_output_file_id_from_unified_file_id(self, file_id: str) -> str:
return file_id.split("llm_output_file_id,")[1].split(";")[0]
def get_model_id_from_unified_batch_id(self, file_id: str) -> Optional[str]:
"""
Get the model_id from the file_id
Expected format: litellm_proxy;model_id:{};llm_batch_id:{};llm_output_file_id:{}
"""
## use regex to get the model_id from the file_id
try:
return file_id.split("model_id:")[1].split(";")[0]
except Exception:
return None
def get_batch_id_from_unified_batch_id(self, file_id: str) -> str:
## use regex to get the batch_id from the file_id
if "llm_batch_id" in file_id:
return file_id.split("llm_batch_id:")[1].split(",")[0]
else:
return file_id.split("generic_response_id:")[1].split(",")[0]
async def async_post_call_success_hook(
self, data: Dict, user_api_key_dict: UserAPIKeyAuth, response: LLMResponseTypes
) -> Any:
if isinstance(response, LiteLLMBatch):
## Check if unified_file_id is in the response
unified_file_id = response._hidden_params.get(
"unified_file_id"
) # managed file id
unified_batch_id = response._hidden_params.get(
"unified_batch_id"
) # managed batch id
model_id = cast(Optional[str], response._hidden_params.get("model_id"))
model_name = cast(Optional[str], response._hidden_params.get("model_name"))
original_response_id = response.id
if (unified_batch_id or unified_file_id) and model_id:
response.id = self.get_unified_batch_id(
batch_id=response.id, model_id=model_id
)
if (
response.output_file_id and model_name and model_id
): # return a file id with the model_id and output_file_id
response.output_file_id = self.get_unified_output_file_id(
output_file_id=response.output_file_id,
model_id=model_id,
model_name=model_name,
)
asyncio.create_task(
self.store_unified_object_id(
unified_object_id=response.id,
file_object=response,
litellm_parent_otel_span=user_api_key_dict.parent_otel_span,
model_object_id=original_response_id,
file_purpose="batch",
user_api_key_dict=user_api_key_dict,
)
)
elif isinstance(response, LiteLLMFineTuningJob):
## Check if unified_file_id is in the response
unified_file_id = response._hidden_params.get(
"unified_file_id"
) # managed file id
unified_finetuning_job_id = response._hidden_params.get(
"unified_finetuning_job_id"
) # managed finetuning job id
model_id = cast(Optional[str], response._hidden_params.get("model_id"))
model_name = cast(Optional[str], response._hidden_params.get("model_name"))
original_response_id = response.id
if (unified_file_id or unified_finetuning_job_id) and model_id:
response.id = self.get_unified_generic_response_id(
model_id=model_id, generic_response_id=response.id
)
asyncio.create_task(
self.store_unified_object_id(
unified_object_id=response.id,
file_object=response,
litellm_parent_otel_span=user_api_key_dict.parent_otel_span,
model_object_id=original_response_id,
file_purpose="fine-tune",
user_api_key_dict=user_api_key_dict,
)
)
elif isinstance(response, AsyncCursorPage):
"""
For listing files, filter for the ones created by the user
"""
## check if file object
if hasattr(response, "data") and isinstance(response.data, list):
if all(
isinstance(file_object, FileObject) for file_object in response.data
):
## Get all file id's
## Check which file id's were created by the user
## Filter the response to only include the files created by the user
## Return the filtered response
file_ids = [
file_object.id
for file_object in cast(List[FileObject], response.data) # type: ignore
]
user_created_file_ids = await self.get_user_created_file_ids(
user_api_key_dict, file_ids
)
## Filter the response to only include the files created by the user
response.data = user_created_file_ids # type: ignore
return response
return response
return response
async def afile_retrieve(
self, file_id: str, litellm_parent_otel_span: Optional[Span]
) -> OpenAIFileObject:
stored_file_object = await self.get_unified_file_id(
file_id, litellm_parent_otel_span
)
if stored_file_object:
return stored_file_object.file_object
else:
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
async def afile_list(
self,
purpose: Optional[OpenAIFilesPurpose],
litellm_parent_otel_span: Optional[Span],
**data: Dict,
) -> List[OpenAIFileObject]:
"""Handled in files_endpoints.py"""
return []
async def afile_delete(
self,
file_id: str,
litellm_parent_otel_span: Optional[Span],
llm_router: Router,
**data: Dict,
) -> OpenAIFileObject:
file_id = convert_b64_uid_to_unified_uid(file_id)
model_file_id_mapping = await self.get_model_file_id_mapping(
[file_id], litellm_parent_otel_span
)
specific_model_file_id_mapping = model_file_id_mapping.get(file_id)
if specific_model_file_id_mapping:
for model_id, file_id in specific_model_file_id_mapping.items():
await llm_router.afile_delete(model=model_id, file_id=file_id, **data) # type: ignore
stored_file_object = await self.delete_unified_file_id(
file_id, litellm_parent_otel_span
)
if stored_file_object:
return stored_file_object
else:
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
async def afile_content(
self,
file_id: str,
litellm_parent_otel_span: Optional[Span],
llm_router: Router,
**data: Dict,
) -> str:
"""
Get the content of a file from first model that has it
"""
model_file_id_mapping = await self.get_model_file_id_mapping(
[file_id], litellm_parent_otel_span
)
specific_model_file_id_mapping = model_file_id_mapping.get(file_id)
if specific_model_file_id_mapping:
exception_dict = {}
for model_id, file_id in specific_model_file_id_mapping.items():
try:
return await llm_router.afile_content(model=model_id, file_id=file_id, **data) # type: ignore
except Exception as e:
exception_dict[model_id] = str(e)
raise Exception(
f"LiteLLM Managed File object with id={file_id} not found. Checked model id's: {specific_model_file_id_mapping.keys()}. Errors: {exception_dict}"
)
else:
raise Exception(f"LiteLLM Managed File object with id={file_id} not found")
|